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Abstract

Sleep is more than resting eight hours a day—it contextualizes and
shapes the routines during the day. Using a large-scale naturalistic
dataset of 180,083 people from a popular sleep app, made possible
by the widespread adoption of passive tracking, we find that peo-
ple’s lives have distinct natural rhythms that can be automatically
inferred from sleep routines. We discover heterogeneous behaviors:
the rhythm of sleep is different for each person, as there is a differ-
ent cadence for each person to achieve consistency. Some are most
consistent week-to-week, while others weeks-to-weeks. We investi-
gate changes in overall daily routines and find the interval for each
person at which they show the most consistency. Through a series
of comparative case analyses, we investigate the implications of
designing for the weekly ‘norm’. Our tripartite analyses triangulate
to one conclusion: we should design for people’s natural routines
to account for variable cycles of regularity.
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1 Introduction

Routines are simple, but maintaining them is not. Consequently,
people seek help from health applications and fitness trackers [3,
5,12, 17, 18, 36, 75, 91, 93, 94] to provide them with accountability
and insights on how to achieve a routine lifestyle. Yet, technologies
for behavioral regularity have known systemic flaws—their efficacy
and design are limited by our knowledge of naturalistic, long-term
human behavior and the methods used to study it [17, 48, 56, 57].

Much of the research and design on behavioral regularity tech-
nologies assume users follow a standard, weekly routine [1-3, 45,
64,71, 93, 94, 99, 104]. However, routine lengths remain an under-
studied property of routines, and this assumption is based on user
experiences from short-lived, controlled studies, instead of people’s
true, lived experiences [17, 47, 48, 56].

Without large-scale, longitudinal observations, we cannot ob-
serve long-term behavioral patterns, nor answer basic questions—
what do people’s routines look like outside the lab? What does
an average person’s routine look like? How prevalent are weekly
and non-weekly routines? What kind of different routines exist
and how many people do they affect? Simply put, we are unable
to evaluate for whom, when, and how our technologies support or
fail [56, 57, 73].

To improve the design of health technologies, we conduct an
exploratory analysis of real, longitudinal sleep routine lengths on
180,083 Sleep as Android app users. Sleep routines offer insights
into how people structure their overall day—they are a proxy signal
for people’s overall routines [6]. If you sleep at the same times,
you are awake at the other times and have access to a structured
lifestyle. Routine lengths contextualize other behaviors during the
day and highlight the diversity of user behaviors. They indicate
how long it takes to repeat a behavioral pattern and imply how
one’s vocation [51, 64] or social obligations [1, 2, 71, 78] dictate
their waking hours.

While there are many approaches in investigating routines, we
look at sleep because it is a universal behavior experienced by
everyone, allowing us to analyze patterns beyond just specific in-
dividuals. Thus, we examine longitudinal, sleep routine lengths to
understand the following research questions:
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RQ1: How do people’s routines vary?
(a) Do daily routines change over time? In what ways?
(b) What is the most common routine length?
(c) Are there alternative routine lengths?
RQ2: What lessons can we learn from longitudinal sleep records,
and how can these insights help us reflect on our current
technology designs and identify any necessary changes?

To answer these questions, we collaborate with sleep medicine
experts and design a process to find a set of good long-term
recorders from a naturalistic dataset. By being transparent in our
system design, which is often obscured in literature [4, 85], we
provide insights into the practical limitations and implications of
the system, offering guidance for future system designers (RQ2).
We select users with continuous streaks of records to refrain from
interpolating missing records. We then conduct stationarity tests
on each user’s daily sleep regularity scores to detect overall changes
in their routine (RQ1a); this process also ensures that subsequent
analyses are not based on random behavioral fluctuations. Next,
instead of assuming that a user follows a traditional, weekly rou-
tine, we uncover each user’s natural routine length by applying
the Fast Fourier Transform on a series of their daily sleep patterns
(RQ1b). Lastly, our comparative, case analyses of non-weekly rou-
tines demonstrate the limitations of weekly designs (RQ1c, RQ2).

Our investigation of routine lengths suggests that alternative,
non-weekly cycles are more common than we think (RQ2). We
find that more than a half of user routines are better described by
alternative, non-weekly rhythms, which, at times, span more than
8 weeks long. Furthermore, some individuals cannot be described
by a singular type of rhythm—rhythms change over time, some are
polyrhythmic, or best described by a mix of rhythms, and some
have no rhythms at all.

As we will show by example and through our discussions with
sleep medicine experts, considering a user’s natural routine length
leads to tailored recommendations that are otherwise masked by
standard, weekly designs. Thus, this paper’s main contribution is
the discussion on how incorporating this simple design change—
accounting for natural routine lengths—can create more transparent
and equitable behavioral regularity and scheduling technologies.

2 Related Work

2.1 Routines in Technological Design

Routines capture the structure of an individual’s day [6, 25, 28, 29]
and are associated with different life styles, vocations, and stages
of life [14, 16, 17, 102]. Polyphasic users have distinct patterns in
the day because they ‘split all sleep into a series of naps’ [49].
Shift workers show ‘routine variations’ [6], or periodically different
schedules for their shifts [49, 64]. Some menstruators [33, 65, 95]
experience periodic behavioral changes with their cycle. The el-
derly commonly experience gradual disruptions in their day-to-day
physical mobility [89].

By understanding characterizations of a user’s ‘normal’ routine,
we can identify deviations [6, 25], which help us design user-centric
scheduling systems and timely digital interventions. In 2003, Be-
gole et al. prototyped a new communication application to facilitate
work coordination by investigating people’s messaging rhythms
and deviations, such as when they were away from work [9]. MAHI
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found technologies can assist newly diagnosed diabetic users by
focusing on ‘breakdowns’, or moments when users realize stark
changes in their daily routines [70]. Similarly, changes in routine in-
ternet usage were associated with depression in users who recently
moved [92], and changes in sleep routines and online activities
indicated the need for postpartum care [26].

An overlooked characteristic of routines is their lengths. Weekly
and monthly designs are the common choice to visualize user in-
sights in many consumer technologies [3, 36, 45, 93, 94, 99, 104].
These top-down designs have been criticized for reinforcing ‘norma-
tive’ behaviors that overlook individual nuances [8, 21, 25, 50, 55, 86]
and providing limited support to users with ‘abnormal’ or irregu-
lar sleep patterns [49-51, 64, 85]. Many menstruators find it ‘dif-
ficult to understand changes in the body’ [95] if their biological
rhythms are outside the normative ‘monthly’ cycle because tech-
nologies aren’t designed to support such ‘non-normative’, irregular
rhythms [33, 82, 95]. Users whose routines are interdependent on
those of others often face challenges because ‘normative’ sched-
ules do not align with their natural rhythms [25]. In other words,
weekly designs lack equity [101] and prevent users from receiving
‘actionable feedback’ [85].

Previous works partially address this gap by designing technolo-
gies that cater to diverse users and their unique, ‘natural’ routines.
Daskalova et al’s SleepBandits [24] and SleepCoacher [23] reduce re-
liance on ‘normative’ designs by allowing users to gain self-directed
insights via self-experimentation. Karlgren et al. [50, 51] expand the
design space to include natural, sleep and body rhythms. SleepGuru
proposes a scheduling algorithm that takes into consideration the
real-life constraints of irregular sleepers like researchers and airline
employees [64]. Abdullah et al. [1, 2] and Murnane et al. [78] pro-
pose new computational models that account for people’s biological
daily, circadian rhythms. Davidoff et al. suggest alternative models
for group-based routine coordination to accommodate families with
intertwined routines [13, 25, 91].

However, there is a limit to understanding and designing for
natural and non-normative routines with controlled, short-term
studies. Many natural behavioral changes and routines only be-
come apparent with long-term observations [37, 40, 57, 88, 96, 107].
Thanks to advancements in unobtrusive sleep tracking, we now
have a new method to investigate longitudinal, natural routines:
long-term sleep datasets.

2.2 Development of Sleep Tracking

Traditional methods of sleep tracking have not been able to cap-
ture a person’s natural, long-term behaviors, as they rely on expert
analyses and uncomfortable sensors in an unnatural sleeping envi-
ronment. Polysomnographies, the gold-standard for clinical sleep
studies, require the individual to wear multiple sensors at a labora-
tory under the guidance of a clinician [4, 15, 85]. While actigraphies
require a single wristwatch wearable, they are unsuited for long-
term tracking because they are uncomfortable to wear through-
out the night [17, 46]. As a result, large-scale datasets such as the
Multi-Ethnic Study of Atherosclerosis (MESA) [10] and the UK
Biobank [97] resort to ecological momentary assessments that cap-
ture snippets of behavior up to a week long [10, 52, 69, 105, 106, 111].
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Alternative methods, such as case studies, allow in-depth investiga-
tions [25, 37, 98], but demand high labor costs [15, 17, 47, 56, 57].

Thus, commercial sleep tracking is a promising alternative. Sleep
tracking is a core feature integrated by many commercial appli-
cations with a large user base [3, 36, 93, 94, 99, 104]—Sleep As
Android and Sleep Cycle each have 10 million downloads on
Google Play [93, 94]. Users are not restricted to wearables as
they can longitudinally record their sleep times with passive sen-
sors [1,3,12,36, 38, 38,41, 53, 68, 75, 84, 99, 110], semi-automatically
track [18, 64, 93, 94], or manually input their sleep records [16, 93].

Despite their benefits, data from commercial technologies are
criticized across disciplines for their data quality, credibility, and
inability to be validated in a clinical setting [4, 7, 15, 17, 58, 67, 85].
However, sensing devices have improved their accuracy [38, 68, 75,
84, 110] and recent validity tests corroborate advancement in accu-
rate sensing of commercial devices [4, 34, 59]. Chinoy et al. show
that seven commercial devices, tested against polysomnographies,
perform comparably to actigraphies [15]. In other words, commer-
cial devices are becoming a viable and cost-effective option for
large-scale, longitudinal research, even for clinical standards [15].

Furthermore, with widespread, commercial integration of sleep
tracking, we can now observe natural behavioral changes and rou-
tines that only become apparent with long-term observations [37,
40, 46, 57, 88, 96, 103, 107, 107, 109]. Jeong et al. was able to investi-
gate smartwatch activity patterns of 50 users for 203 days [46] and
Xu et al. introduced a 2-year dataset to model associations between
sleep and associated health factors [107].

Within the sleep medicine community, Yuan et al. examined 2
years of data and found changes in sleep duration and sleep timing
from Covid-19 [109]. Additionally, Viswanath et al. [103] extended
Katori et al’s work to discover 13 different sleep phenotypes [52],
or behavioral traits, using data from 33,000 naturalistic Oura Ring
users. As Arnardottir et al. state, ‘the widespread use of wearables...
enables research on sleeping patterns and behaviors on larger and
more heterogeneous cohorts of people than ever before’ [4].

Our investigation is distinct from previous works [46, 103, 107]
in both our method and the characteristic of routines that we choose
to focus on: routine lengths. Prior works on sleep routines focus pri-
marily on daily sleep regularity [35, 69, 83, 105, 108] and investigate
its association with some other factors such as mortality [105], de-
mentia [108], and cardiometabolic risk [69]. However, we focus on
deepening our knowledge of routines and expand our investigation
beyond the day-to-day and week-by-week contexts by examining
a series of daily sleep regularity scores. While our work also inves-
tigates long-term behaviors with a secondary dataset, Viswanath
et al’s work investigates routine transitions [103].

Furthermore, unlike Viswanath et al’s work, we do not make
assumptions on how long a sleep period or cycle length is; instead,
we find the cycle length that best describes the user from their
sleep records. In addition, our aim is not to categorize but to discuss
how considering natural, longitudinal routine lengths introduces
more equitable designs and actionable recommendations to users
of behavioral regularity and scheduling technologies.
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3 Finding Good Long-term Sleep Recorders

We analyze 180,083 users with up to a decade of records from the
Sleep as Android App during June 1st, 2014 to April 23rd, 2024. All
anonymous users consented to using their data for research pur-
poses. Users self-report sleep start and end times with a method of
choice. Users can also integrate wearables to enhance accuracy and
utilize a sleep estimation feature, which uses activity logs to auto-
fill probable sleep periods and prevent missing recordings. Thus,
the app’s core functionality is that of a semi-automatic sleep di-
ary [93]. Multiple sleep events within a 24 hour period are recorded,
including naps and interrupted sleep. Information on phone device,
time zone, gender, and age are also available.

In the following sections, we outline the process and design
considerations for developing the system that identifies ‘good long-
term sleep recorders’. While the system is applied to a single col-
lection of sleep records, we document our design considerations
for reproducibility and the number of users affected at each step
to provide a practical evaluation of the system. This section also
serves to provide transparency in the system design such that fu-
ture designers can gain insights into the practical limitations and
implications of the system (RQ2).

First, we collaborate with domain experts specializing in research
on sleep and circadian disorders to define ‘good sleep records’.
Then we analyze the number of sleep logs for each user to define
an ‘engaged’ user. Next, we look at each user’s ability to record
uninterruptedly to find ‘good long-term sleep recorders’. Finally, we
discuss the trade-offs of using this dataset and evaluate for dataset
validity and the biases of this system.

3.1 Methods

3.1.1 Good Sleep Records. Selecting which sleep records to include
in analysis is a challenge in naturalistic data, due to the difficulty
in corroborating heuristics of validity. ‘Good sleep records’ reflect
expected sleep behavior. Each record should have logical start and
end times and fall within the range of normal sleep duration. The
former issue is negligible. Less than one percent of users mistakenly
input their sleep end time before their sleep start times and such
records are removed. The latter requires domain expertise, because
uninformed thresholds can introduce biases in favor of users with
particular behaviors.

In consultation with domain experts, we set the threshold of a
‘good sleep record’ as a range between 5 minutes and 16 hours.
According to domain experts, it is “extremely unlikely for a healthy,
non-sleep deprived individual to have sleep episodes to exceed 16
hours... it is physiologically hard for someone to sleep over a day.
They may be in bed for that long, but are probably not asleep.” We
set the minimum threshold to 5 minutes to include naps.

Any sleep records outside the range are removed. The practical
impact of each removal process is as follows. Excessively long sleep
sessions accounted for only 0.24% of the total records and 251 users
only recorded excessively, long sleep sessions. About a fifth of users
recorded excessive sleep at least once, indicating that this recording
mistake is relatively common among people. Over half the users
(102,842) recorded extremely short sleep sessions at least once and
approximately one percent of users (2,489) recorded only sleep
sessions less than 5 minutes.
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Finding Engaged Users by Number of Logs Entered
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Figure 1: Half the users recorded at least 100 sleep sessions and more than a quarter of users recorded 445 sleep sessions or
more. We use the median number of logs entered to define the 88,765 ‘engaged’ users.

Thus, short sleep records, potentially caused by noise from
passive tracking devices, are the most common reason for messy
records. This process leaves 177,342 users with ‘good sleep records’.

3.1.2  Engaged Users. From these ‘good sleep records’, we identify
‘engaged users’ with the number of sleep sessions recorded, a com-
mon proxy for user engagement [87]. We base the analysis using
users’ non-nap times to further minimize the influence of potential
erroneous self-reports. Because the upper threshold of naps varies,
even within the sleep community, we consider records that are at
least an hour long, derived from the median nap time (Figure 2). As
depicted in Figure 1, the sharp incline in the beginning signifies the
casual recorders—a quarter of users record 15 sleep sessions or less.
On the other hand, more than 50% of users log at least 100 sessions
of sleep and more than a quarter of users record 445 sleep sessions
or more. It is unlikely for such high numbers of entries to be ran-
dom, given that users voluntarily self-report their sleep sessions
for their own benefit. We take the top half of users that log at least
100 sleep sessions to ensure we analyze records from committed
users. This process leaves us with 88,765 ‘engaged users’.

3.1.3  Long-term, Continuous Recording. While the number of logs
is indicative of engagement, not all users are equally ‘good trackers’
who can record their sleep uninterrupted for extended time periods.
Users may forget to track, choose to stop tracking, or are unable to
record their sleep due to external factors (e.g., traveling with no Wi-
Fi, broken phone, phones out of batteries, etc.) [31, 62, 63, 73, 80].
Typically, understanding how many times a user fails to record will
tell us about how good of a tracker they are.

However, we find that defining ‘good trackers’ based on the
number of missing records may be skewed because longitudinal
users can have extended periods of inactivity [46, 74]. We extracted
the median and maximum duration of gaps in recording. The me-
dian characterizes the common mistakes the user makes, while the
maximum describes the long breaks the user takes.

In general, the median number of days users skip recording is
2 days in a row. Half the users lapse or pause recording [32] for
at least 50 days in a row before returning to the application. Thus,
looking at the percentage of missing records is misleading—a user
who took a break is not necessarily a bad tracker.

Instead, we look at the longest streaks [46], or continuous records
of their main sleep times, excluding naps. Two sleep records are
considered continuous if the user wakes up on the same date or the
next date after the previous wake-up date. While more than 50% of
users record continuously for at least 56 days, we need long-term
observations to observe routines, or repeat behavioral patterns.
Thus, we focus on the top 30% of users who can record for 120 days
at a time at least once. This allows us to observe at least 3 cycles,
each spanning at least a month each. These 25,578 engaged users
are what we define as ‘good long-term sleep recorders’ and are the
basis of subsequent analyses.

3.2 Striving for Validity in Naturalistic
Self-Reports

We choose a deliberate trade-off using this secondary dataset. Be-
cause the data is from an external platform where the collection
began over a decade ago, there are inherent constraints to its use.
Unlike lab settings, self-reports are messy with missing information.
As we show in previous sections, users can forget and pause track-
ing for long periods of time. Many also omit their demographic
data—80% of users’ age and gender are unknown. While 95% of
users report what smartphone device they used, the dataset does
not provide information on what tracking method they used.

On the other hand, self-reports include users from all over the
world and are recorded in-situ. Users are not subject to the reminder
follow-ups or artificial sleep conditions of controlled studies. As a
result, these are a diverse group of long-term users who track in
their natural sleep environment.
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Median Nap and Sleep Times of Engaged Users
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Figure 2: Dataset reflects expected sleep and nap lengths. Average naps are 0-1.9 hours with a median of 1 hour. Sleep sessions
are 6.9-8 hours long with a median of 7.5 hours. Daily sleep routine scores are within expected ranges and exhibit similar left
skew distribution shapes, as does previous works on daily sleep regularity [69, 83, 105]. High median shows our system has a

bias towards users with more regular daily routines.

Analysis of each user’s primary time zone, defined by the mode,
indicates 46% of users are from Europe, 34% from the Americas, and
13% from Asia. The median indicates that more than 50% of users can
log at least 100 sleep sessions and 25,578 users track without missing
arecord for at least 120 days. We believe a dataset that has these
trade-offs provides a unique perspective, and complements other
methodologies and datasets about human behavior and routines.

By corroborating the data using heuristics from the literature,
we gain confidence that these self-reports have sufficient signal.
While the records may have unintentional mistakes, self-reports
have little incentive structure for users to intentionally obstruct
the data for extended periods of time, as users were capturing the
data for their own use, rather than in service for a research study
or experimenter. We apply two heuristics to check the data: nap
and sleep duration and average daily routine scores.

First, people’s sleep and nap duration are within expected ranges.
For each user, we use a Gaussian Mixture Model to form two clus-
ters of each user’s naps and main sleep duration. This unsupervised
clustering method helps describe multimodal density plots. The
model assumes that the data is composed by a mix of Gaussian
distributions, a common assumption for nap and sleep duration in
literature [35]. We apply this probabilistic clustering method be-
cause it is more robust to outliers and therefore naturalistic datasets,
unlike other clustering methods such as k-means.

‘Naps’ are any sleep sessions that last less than half the mean
of their primary sleep length (a definition provided by our domain
experts). Our definition of nap times did not include the time of the
nap to avoid systematically excluding users with non-normative
schedules (e.g. night owls, shift workers). As a result, naps for users
who have a main sleep duration of 5-6 hours would be up to 2.5-3
hours long. This could indicate fragmented sleep, but this would
be indistinguishable from a nap that a user takes from their main
sleep since we do not have ground truth from our users.

While we use naps as a behavioral check for both naps and
sleep durations, given that naps are under-defined even within
the sleep medicine community, the primary focus is on the main
sleep duration. As summarized in Figure 2, the median ‘nap’ time
is one hour, and naps range between 0-1.9 hours. Most users’ sleep
times range between 6.8-8 hours with a median of 7.4 hours. All of
these indicate that the users in the dataset exhibit expected sleep
behavior, and not random noise.

In addition, people’s daily sleep routines also align with expec-
tations from prior research, further supporting the validity of the
dataset. We use the Sleep Regularity Index (SRI) because it offers a
way to validate a series of daily natural routines [83], while account-
ing for behaviors we expect to occur in our naturalistic dataset such
as naps and sleep fragmentation [35]. The metric is a similarity
score that describes how similar two adjacent days are, on a scale
of 0 to 100. A user who has perfect daily regularity, or is asleep
and awake at the same times on day 1 and day 2, has an SRI of
100. A unit in SRI accounts for 14.4 minutes of discrepancies with
the previous day. We use SRI scores to investigate daily routines
because they include information on both the waking and sleeping
hours of the day.

Previous studies of people’s average SRI scores sampled one week
periods of its users [69, 105]. Studies found the user SRI scores to
have a left skew distribution and range between 60-100 [69] and
58-100 [105]. Our system also shows users with a similar left skew
(Figure 2) and daily scores ranging from 53-100. However, the
median is skewed towards users with higher daily regularity, likely
due to the selection criteria favoring consistent long-term trackers
with no missing records—there may be a confounding factor in
which ‘good recorders’ are also the same people who maintain a
daily routine. In addition, users who do not utilize semi-automatic
methods may have more missing records, making them less likely
to be included in the long-term continuous recorders group.
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While we acknowledge these limitations, it is still the case that
users’ daily sleep routines are within expectations of prior research,
and show something other than random behavior. Furthermore,
because our study explores whether there are variations in user
routines, if we observe variations even among a more regular group
of users, this suggests that individuals with less consistent routines
may also exhibit variability in their behaviors. More importantly,
this dataset still provides us with an opportunity to investigate
routines of 25,578 users in their natural settings, a mass investiga-
tion that has not been possible until now, thanks to the widespread
adoption of sleep tracking.

4 Rhythms of Regularity

Average daily routines, while informative, do not capture how peo-
ple’s routines evolve over time. We need to look at a long series of
daily routines to understand the different ways in which people
behave, or their rhythms of regularity. We conduct a tripartite
investigation to understand how people’s routines vary (RQ1) and,
in the process, we identify the lessons learned from the analyses
(RQ2). The overall process is summarized in Figure 3.

First, we look at overall changes in daily routines by analyz-
ing standard deviations and conducting stationarity tests on each
user’s SRI scores (RQ1a). Next, to find the most common cycle
length (RQ1b), we investigate routine lengths of A = n using a Fast
Fourier Transform, a method to identify periodic components of
a signal. Lastly, we conduct a series of comparative, case analyses
and incorporate insights from our discussions with domain experts
in sleep medicine to gain an in-depth understanding of how peo-
ple’s routines vary (RQ1c) and identify key lessons we learn from
investigating longitudinal sleep records (RQ2).

Throughout our analyses, we find that routines are heteroge-
neous and many are better described by changing or non-weekly
routines and we further expand on the lessons learned in the dis-
cussion section (RQ2).

4.1 Changing Rhythms: How Daily Routines
Change Over Time

We examine how people’s daily routines change over time because it
indicates how common behavioral changes are among users (RQ1a).
The question is, can we observe such changes using people’s sleep
records? And how do people’s routines change overall? Do people
have little to no changes in their day-to-day routines? Or does
everyone have one consistent routine throughout?

4.1.1 Method. We answer these questions from two angles: users’
standard deviations and stationarity tests of their daily SRI scores.
Standard deviations help us understand how much consistency peo-
ple have in their day-to-day routines. The higher the standard devia-
tion, the more irregular the user’s daily routines are on average—in
other words, they struggle to maintain a consistent, daily routine.
We convert the units into minutes for interpretability.

Stationarity tests are descriptive tests that help us examine
changes in mean and variance over time and allow us to understand
trends [44], or how users evolve over time, and whether users adopt
new routines. Stationarity is also a precursor condition to examine
cyclic patterns in subsection 4.2, because it allows us to observe real,
periodic patterns, without the interference of trends or seasonal
effects. Because stationarity tests require continuous, univariate
time series data with no missing values, we apply them to each of
the SRI scores of our ‘good, long-term recorders’.
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Figure 4: Half the users have 1.3—2.1 hours of variation in their average day-to-day routines (left). Only one percent of users
have constant daily routines that vary less than 40 minutes day-to-day and these are the users with A = 1 (left). 28% of users
change their routines significantly over time (right). Users with ‘strictly non-stationary’ daily regularity scores and users who
require more than two differencing have complex patterns which imply major behavioral changes over time. This means such
users have no dominant routine, and are considered to have a A = 0. We can remove trends from ‘Quadratic Trend’ and ‘Linear
Trend’ users with differencing. For these users and the ‘strictly stationary’ users, we can compute their Fast Fourier Transform

and examine cyclic patterns, or routine lengths.

We use two complementary stationarity tests to determine
whether the user’s daily routines are strictly stationary, strictly non-
stationary, or conditionally non-stationary. The Augmented Dickey-
Fuller (ADF) [30] tests for non-stationarity and the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) [61] for whether there is a constant
deterministic trend. For implementation, we used the constant re-
gression model with automatically selected lags (ADF used the
Akaike Information Criteria).

If both ADF and KPSS reject the null at « = 0.05 [90], they are
considered strictly stationary: they have no major changes in their
daily routine. If they both agree to accept the null, they are strictly
non-stationary, which means the user has major changes in their
daily routine and has adopted a new routine over time. If the two
tests disagree, this means the user’s daily routines are conditionally
non-stationary and may have underlying trends or seasonal effects
in their daily routines.

One way to achieve stationarity is by removing these effects
through differencing [44], the successive subtracting of the previ-
ous SRI score from the next. The number of times we difference
also reveals underlying trends, or how people change. Achieving
stationarity after one differencing indicates a linear trend, while
two suggest a quadratic one. Users who required higher order dif-
ferencing have complex trends and are not made stationary to avoid
oversmoothing [44].

4.1.2  Findings. Our results show that most users don’t follow the
same exact routine every day—it’s rare to be regular, not the
norm. Half the users have 1.3-2.1 hours of inconsistencies in their
day-to-day routines, 28% of users’ daily routines are not stationary
and adopt a new daily routine over time, and less than one percent of
users follow the same, stationary routine with less than 40 minutes
of variation day-to-day.

Furthermore, according to the number of times we difference
to achieve stationarity, we find that some have linear while others
have quadratic changes in their daily routines (Figure 4). All of
these results show that the ways people change also vary.

The results suggest we need to design technologies that are for-
giving of change. Technologies that model real-life patterns should
expect users to naturally deviate from their average daily routines.
Expecting perfect day-to-day consistency is unrealistic for most
people. People adopt new routines and change their daily routines
over time. Change is prevalent, but perfect, daily regularity is not,
and we continue to see such behavioral variations in subsequent
sections when examining routine lengths.

4.2 Routine Lengths: A Method to Investigate
Variable Cycles of Regularity

Learning what natural routine lengths are most common among
users (RQ1b) inform us for whom and how we should design
behavioral, health technologies. Routine lengths are behavioral
signatures, or distinctive patterns unique to an individual. Different
routine lengths have different meanings. For example, the users
with less than 40 minutes of day-to-day variations have a constant
daily routine, while 9-5 workers follow a weekly one. Others, like
the non-stationary users and users with complex trends, do not
have a single, dominant routine because they change their routines
significantly over time. Thus, investigating routine lengths informs
us of the most common routine and of alternative routines (RQ1c).

4.2.1 Method. We can examine the user’s routine length with
the Fast Fourier Transform (FFT). This method deconstructs the
user’s stationary daily SRI scores into a combination of cosine and
sine functions, or basic frequency components. The amplitude and
phase information of each frequency component is stored in an FFT
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Figure 5: Variable Cycles of Regularity. Weekly routines A = 7 are the most prevalent among 25,578, long-term users, but more
than half of them have alternative routine lengths. Some are regular weeks-to-weeks, and others are months long. Others
(A =0) don’t have a singular, dominant routine because their daily routines change significantly over time.

coefficient. The normalized squared magnitude of the coefficient
represents the power of that frequency.

The Power Spectral Density (PSD) is the distribution of power
across different frequencies. Peaks in the distribution indicate which
routine lengths A have more power in describing the overall struc-
ture of the signal. We search for the highest power A routine length
from A = 2 up to A = n, where n represents one-third of the total
number of the user’s recording days. This ensures that we observe
at least three repeating cycles. To focus on the underlying routine
patterns, we smooth the SRI scores with a Gaussian Filter (o = 1),
which dampens noise by placing less weight on scores further from
the user’s SRI mean, or daily sleep routines that are atypical for
that user. In other words, by searching for the A with the highest
PSD value, we can find the user’s most dominant routine length
(i-e., their main routine).

We then count how many users have a weekly routine (1 = 7)
and non-weekly ones. To understand what types of non-weekly
routine lengths exist, we bin users by doubling the routine lengths:
1 to 2 weeks or A = 8-14 days, 2 to 4 weeks, 4 to 8 weeks, and 8
weeks or longer. We also incorporate findings from subsection 4.1.
Users with A = 0 are those who do not have a singular, dominant
routine as their daily routines change significantly over time—these
are the strictly non-stationary and conditionally non-stationary
users with complex trends from Figure 4. Users with A = 1 are the
one percent of users whose daily routines are constant as they vary
less than 40 minutes day-to-day.

4.2.2  Findings. We find variable cycles of regularity—some
users are consistent week-to-week while others are consistent
weeks-to-weeks (Figure 5). While the most common routine length
is a weekly one (A = 7), over half the users follow a non-weekly
routine, some of which span weeks-to-weeks (1 > 14). 6% of users
have routine lengths less than a week, 10% of users have routine
lengths A = 8 to A = 14 days, 15% of routines last between 2-4
weeks, 12% have routines that last between one and two months,
and 6% of them have routines that last longer than 2 months. 7% of
users don’t have a singular, dominant routine because they are ei-
ther non-stationary or have complex trends, meaning their routines
change over time.

Given the prevalence of non-weekly routines among users, these
findings suggest a need to redesign behavioral health technologies
such that they account for people’s natural routines. The current
practice of designing technologies for the ‘normative’ A = 7 system-
atically disregards more than half of users. While previous works
have shown that many marginalized groups face mismatched expec-
tations between their routines and product features [49, 51, 64, 95],
our results suggest that the problem may affect a larger population

and that we need to reconsider our assumptions on what is ‘normal’
or ‘expected’ behavior. To start addressing this problem, in the next
section, we conduct a series of case analyses to understand in-depth
the practical implications of current design practices and the issues
that users with alternative routines may face.

4.3 Case Analyses: In-Depth Investigations of
Alternative Routines

To gain insights on how to redesign for users’ natural routines
(RQ2), we conduct a series of comparative case analyses. By ‘situat-
ing’ ourselves in the shoes of our users [43] and observing in detail
how user behaviors unfold over a long period of time [42, 76, 113],
we can understand the practical implications of current design
practices, such as when and for whom current design practices
fail (RQ1c). Thus, the primary objective of this analysis is not to
categorize users, but rather to provide illustrative examples that
highlight the diversity of routines and emphasize the importance
of observing natural routines longer than a week.

4.3.1 Methods. We focus on 150 cases, comprised of the top three
users with the most distinct patterns, or highest PSD values, for each
A =7-56. We focus on cases that span a week or longer, because
a core objective of the paper is to fill the gap in understanding
longitudinal behavioral patterns that short studies cannot capture.

To investigate unique behavioral patterns among users, we qual-
itatively analyze their PSD charts and sleep times with their natural
A. Each user’s PSD is normalized by the user’s total PSD value into
a value between 0 and 1. The normalization allows us to visually
compare the structure of users’ PSD charts. Users with only one
routine show one dominant peak in the PSD chart, while those with
complex routines show multiple peaks (Figure 8).

Thus, PSD charts give us information on their routine lengths
while the visualization of user sleep times helps us identify other
distinct behavioral patterns such as abrupt shifts in sleep wake
times. By combining our understanding of routine lengths from
PSD charts and other behavioral patterns from sleep time charts,
we can holistically identify user behavioral patterns.

4.3.2 Observations. In our case studies, we observe that how peo-
ple change within their routine, or the composition of rhythms,
must be a key consideration when designing for natural routines.
We identify two unique composition types that can only be under-
stood with long-term observations: waves and alternations. These
are the two most common patterns in our visual comparisons of
sleep times and PSD charts.
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Figure 6: Wavy Users. Demonstrates routines can be long and requires long-term observations; some span even seven weeks
(W4). Wavy users have distinct, slow changes in their sleep times that gradually return to their original sleep time every 1 days.
To highlight wave patterns, colors alternate every 1 between sky blue and gray.

Other patterns described users with ‘fragmented sleep’ and ‘hilly’
sleep structures. However, these are not included in our analyses
as their patterns were less visually apparent and identified in a
small subset of users (less than 5). Users with waves gradually shift
their sleep and awake times over their natural A (Figure 6). On the
other hand, users with alternations periodically alternate between
their primary and secondary routine, typically through an abrupt
change (Figure 7). We observe waves in 8% of the cases (12/150) and
alternations in 11% of cases (17/150).

Beyond the Weekly Rhythm. Wavy and alternating users tell
us that certain routines are describable only with long-term obser-
vations. Wavy user W4 in Figure 6 requires 5 months of records to
observe that the user’s sleep and awake times gradually shift every
7 weeks from midnight to midnight and exhibit waves. Similarly,
we cannot identify alternating user A3’s 3-week routine without
long-term observations (Figure 7). If we only observe the first week
of A3’s routines, the user appears to be an irregular sleeper who
has inconsistent sleep times between midnight to noon.
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Figure 7: Alternating Users. Demonstrates that routines can have abrupt ‘alternations’, or changes in routines. Within a A
routine, users alternate between routines. The change is not gradual like wavy users, but abrupt.

With three weeks of observations, we might believe that the
user had a singular, ‘bad’, first week, and that their real sleep times
are between midnight and 6 am. It is only after observing multiple
weeks of records that we can recognize that the first ‘irregular’
week is actually a routine variation [6], or an alternation in their
routine, that is part of the user’s larger 3 week routine.

Furthermore, comparing short-term routines with long-term

routines reveals design opportunities for behavioral regularity tools.

For example, when discussing cases Al and A4, our domain experts
raised the following questions: “Somebody who alternates every 4
days (like a shift worker) will likely face health issues based on current
research or conventional wisdom, but what about somebody who shifts
on a monthly basis? Or when you shift rhythms, how long do you
need to stay on the new rhythm to mitigate health risks?”

While our domain experts provide perspectives from a health-
care standpoint, these insights suggest the need to design interfaces
with more holistic views of routines. The length and transitions of
routines are not only interconnected with other aspects of health,
but also influence other external routines, such as productivity
and work schedules. Incorporating such factors into personal infor-
matics tools and scheduling systems could provide new ways for
individuals to explore their data and manage their routines. While
further research is needed to design systems that foster holistic
self-exploration and self-experimentation without reinforcing un-
healthy behaviors, considering such factors in the system design
could enhance long-term user experiences with self-exploration
tools. Thus, there is an opportunity to develop technologies that
consider long-term interactions between different routines.
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Figure 8: Polyrhythms. In contrast to users in Figure 6, polyrhythmic users show multiple high peaks in their PSD. They have a
main routine and another subroutine. Users A3 and A4 show peaks at 1 = 7 in addition to their main routines at A = 21 and
A = 27, respectively. User P1 also has multiple subroutines (right). The top two peaks at A = 11, 42 reflect shorter and longer term
patterns (bottom). Examples demonstrate that routines are complex and are not always defined by a singular routine.

Polyrhythms. In addition, we learn from the long-term, al-
ternating users that natural routines are complex, composed of
subroutines—they are polyrhythmic. In our visual inspection of
the alternating users’ PSD charts, we observe a recurring pattern
characterized by two or more prominent peaks in their PSD. This
behavior contrasts with wavy users whose PSD typically exhibits a
single dominant peak. We know that many people have 2 subrou-
tines within a week because they suffer from social jet lag, or two
different lifestyles during their workday and weekends [1, 64, 98],
like alternating user Al.

However, subroutines aren’t limited to a weekly framework. A2
has a 9-day main routine and a 3-day sub routine. As denoted by
the two highest peaks in their PSD (Figure 8, left), A3 and A4 also
alternate between a distinct, main and secondary routine. These
subroutines are also non-weekly. Polyrhythmic user P1 has an 11-
day and a 6 week long routine. In weeks 6-24 in Figure 8, the user
shows a clear 6 week pattern with alternating sub-patterns. Within
a 6 week cycle, the user sleeps between midnight and 6 am. in
the first 11 days, and in the next three 11-day cycles, they have
alternations towards the end of each 11-day cycle.

These observations show that some users maintain two distinct
lifestyles. While we do not know whether these polyrhythms are
due to personal choice or external factors like their vocation, they

indicate that we shouldn’t design technologies that impose a singu-
lar routine or lifestyle.

For example, if a system creates an 11-day routine for user P1
and continually alerts them that they are making mistakes during
the next three 11-day cycles, despite this being part of their actual
routine, those alerts could be perceived as discouraging. The user
may feel that the system overrides their experience or ignores the
context of their behavior [11, 96]. This misalignment in expecta-
tions can result in decreased engagement, or the user may give up
on trying to improve their routines or using the system altogether.
Thus, to minimize user frustration and maximize personalized rec-
ommendations, we need to design systems that accommodate for
the user’s subroutines.

Re-Designing with Natural Routines. Not only are we limited
in our ability to recognize long-term patterns, but as we show
by example, applying a normative week-to-week framework on
such users will prevent us from providing tailored insights and
sometimes even lead to incorrect recommendations. Let’s take A3
and overlay each week of their routine, to observe weekly patterns
(in essence, this is a visualization of a commonly implemented
weekly average). We see in Figure 9 (left) that user A3 struggles
every fifth and seventh day of their routine, as their SRI scores
drops to 40.
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the alternating user A3 (left). The overlaid line plot on the left suggests the user struggles every fifth and seventh day of their
routine. However, if we re-design the plot using their natural routine of A = 21 (right), we find that the user should look at their

routine on a 3-week basis, and focus on the 5th day, 14th, and last day of their routines to achieve regularity.

However, if we make a simple design change and display their
daily routine scores using their natural A = 21 routine in Figure 9
(right), we can understand user needs better and offer specific
recommendations. We see that their behavior from 3 weeks prior
best describe them, not the week prior. The individual struggles to
maintain a consistent daily routine on the fifth, fourteenth, and last
days of their cycle. In fact, their daily sleep routine score for the
seventh day of their cycle does not drop to 40, as suggested by the
A = 7 design, but is instead around the 80s. Their score drops to
40 only on the fifth and the last day of their cycles. They also have
irregularities to a lesser degree every two weeks, as it drops to 60
instead of 40. In other words, these are the nuances that become
lost when we do not design with people’s natural routines.

These examples illustrate that relying on a normative week-
to-week framework prevents us from understanding the third of
users with A > 15 routines (Figure 5). By not considering their
natural routines, these users lose the opportunity to find meaningful
insights and create actionable items. Pre-existing dashboards and
models that do not consider natural routines are misinformed and
can lead users to misguided conclusions.

Re-designing with longer natural rhythms is also an opportu-
nity to develop better recommendation systems and data explo-
ration tools for both clinicians and individuals. According to our
discussions with sleep medicine experts, such re-designs could help
identify whether “specific recurring behaviors (due to work, social,
etc.) correspond [and] be helpful in the clinic when discussing recom-
mendations with users to take into account behavioral factors.” In
addition, such re-designs could help identify patients with seasonal
affective disorder or patients with non-24-hour disorder. The latter
are “usually drifting a few minutes each day, [and] the larger rhythm
occurs on the scale of months [... This] might be obfuscated if you
were averaging data across 1 week, but would show up more clearly
on a larger scale.” Integrating such re-designs into consumer tech-
nologies could also help individuals recognize long-term behavioral
patterns that are difficult to identify in clinical settings and enhance
their access to timely, personalized care and self-knowledge.

5 Discussion
5.1 Long-term Designs that Expect Change

We’ve investigated users’ natural routines in three different ways.
First, we examined overall changes in daily routines. Next, we ex-
plored the diversity of routine lengths. Finally, we analyzed sample
cases of unique routine patterns. Across all three analyses, we found
that changes in sleep and routines are not uncommon. 28% of user
showed major changes in overall behavioral routines, more than
half of users have non-weekly routines, and some long-term users
have wavy, alternating, and polyrhythmic routines. As found in
previous works [52, 64, 103], variations in routines are not limited
to a select group of anomalous users or those with specific needs—
they are experienced by a broader group of users in general. In
other words, changing routines is normal behavior.

Variations in routines prompt us to reassess the assumptions
underlying our current approaches in evaluating and designing
systems. Many tracking technologies are evaluated on its pre-
dictive ability to detect or model sleep using short-term stud-
ies [5, 12, 38, 75, 77, 111]. While accurate sensing is important
(as it has evidently made this study possible), the true value of
consumer health technologies may lie in their ability to remain
robust in the face of behavioral change.

Take for example, the polyrhythmic user in Figure 8 whose true
routines only appear after long-term observations. Are current sys-
tems able to adapt to such users with different, non-weekly routines,
gradual and abrupt changes in routines, and polyrhythmic ones?
Should we instate different stabilization strategies and fewer re-
minders and nudges during periodic routine switches [37, 66, 112]?
Can systems accommodate to lapses in recording that appear in half
the users? Is it even possible to have a constantly high-accuracy
system? Perhaps, given the prevalence of ever-changing users [79],
we should instead design context-aware behavioral systems [27]
that accommodate and accept a certain level of unpredictability [54]
and adapt to behavioral transitions [79].
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Figure 10: Design Guidelines. The yellow sticky note summarizes the five lessons to consider when designing for natural
routines. The table on the right demonstrates problems that arise from not considering natural routines, describes the effects
of such problems, and identifies potential design opportunities.

5.2 Re-evaluating Research Methods with
Alternative Designs

Given that more than half of users showed non-weekly rhythms, de-
signers and researchers should also re-evaluate whether their inves-
tigation methods are providing users with sufficient alternative de-
signs [100]. Previous works often ask users to critique systems while
providing only weekly or monthly views of their behaviors [18, 22—
24, 26, 45, 64, 98]. However, as we learned from our polyrhythmic
users and the redesign process, imposing a ‘normative’ framework
is limiting and sometimes even misleading because ‘one size does
not fit all’ [39]. This sentiment is further corroborated by previous
works in which users with ‘non-normative’ behavioral patterns
feel frustrated by pre-existing activity trackers because they do not
fully explain their lived experiences [19, 25, 33, 49, 51, 55, 64, 95].

Thus, when evaluating cyclic system designs with users, we
should ensure that the study does not bias users by providing them
with ‘normative’ designs. User preferences to ‘normative’ weekly
designs may be an artifact of liking familiar designs and may not
be a reflection of what the user truly finds helpful. To draw better
critiques and make sure we are “getting the right design and the
design right”, as Tohidi et al. suggests [100], we should re-evaluate
our systems with users by providing them with alternative designs
that accommodate their natural routines.

We may not have to look far for alternative designs—we can re-
visit and examine the systems created for the ‘extreme’ ends of the
user spectrum [33, 50, 51, 64]. For example, previous research on
individuals with irregular vocations [64] and family routines [25],
have already suggested new calendar systems informed by people’s
natural schedules. Such designs for ‘niche’ users may already be
more flexible and accommodating to changing routines because
they are built to support a wide range of variation in behaviors and
evolving user needs [32, 60, 79]. By integrating these approaches
into more mainstream designs, we can benefit a broader range of
users, including those with ‘normative’ needs.

5.3 Designing Transparent Tools with
Long-term Natural Routines

As evident in our long-term recorders, self-tracking data is no longer
simple, but complex. Users who wish to gain insights or conduct
data-driven self-experiments need new tools that allow them to
process and investigate long-term patterns without the effects of
data overload. One solution is to develop sophisticated blackbox
models that identify insights and patterns, but such systems often
strip users’ agency over their data and suffer from their lack of
explainability and transparency [4, 85]. From a practical standpoint,
it is also challenging to enforce companies to be transparent about
proprietary models.

A concrete, but simple solution to achieve transparency is through
re-designs that account for a user’s natural routine and explicitly
communicating what behavioral assumptions were considered in
the design. The visual dashboards of six widely used commercial
tracking applications (i.e. Whoop, SleepCycle, Sleep as Android,
Apple Health, Oura, Fitbit) [3, 36, 93, 94, 99, 104] provide view filters
only on a calendar basis (e.g. daily, weekly, monthly, and yearly).
This implicit design choice can leave users with non-standard sched-
ules unaware of the limitations of such designs.

Thus, systems should inform their users what types of behaviors
they can support so that users can make informed decisions or
provide adaptive, behavior-based interfaces to cater to different
cohorts of users [22]. For example, systems could ask users for their
scheduling routine before using the application or provide flexible
visualization dashboards that customize view filters based on user
input. As we show in our re-design case, such design changes
can reduce misinformation without introducing much complexity
and suggest more meaningful insights, concrete action items, and
‘durable changes’ on how a user should modify their behavior [37,
81, 85]. Ultimately, these changes could lead to more equitable
systems by providing ‘non-normative’ users access to behavioral
information that ‘normative’ users by default have access to due to
the weekly design of existing systems (Figure 10).
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5.4 Opportunities for Holistic and Equitable
Scheduling Systems

Analyzing different proxy signals opens opportunities to design new
holistic and equitable scheduling systems. Scheduling is a complex,
social coordination problem that requires users to acknowledge
each other’s differences and accommodate individual needs for all
parties to feel fairness [101]. Our case analyses suggest we can
design more equitable scheduling systems by considering a user’s
routine length, how many routines they are managing, and how
long it takes for an individual to recover from a change in their
routine. A more holistic view of the individual could provide a
more nuanced understanding of whether two people’s routines
are compatible with each other and help create more equitable
group-based scheduling strategies [9, 25, 101].

Furthermore, understanding routines through such proxy sig-
nals could pave the way for new holistic scheduling systems that
integrate both the individual’s internal and external behavioral
schedules. Similar to how SleepTight found that non-routineness in
external behaviors affected people’s sleep routines [18], we could
provide users with more context-aware recommendations to users
by analyzing both their external, messaging patterns and internal,
sleep routines. Menstruators can find whether their personal strug-
gles to maintain a routine stem from a misalignment between their
longer, natural rhythms and their weekly schedules. Individuals
who are aging or in postpartum could start quantitatively identify-
ing whether the onset of declining health is due to the breakdown
of their original routines. Thus, users could become more intero-
ceptive, study the interplay between their internal and external
rhythms, and design new personalized schedules that are compati-
ble with their biological rhythms.

5.5 New Methods to Investigate Long-term
Behaviors and Routines

In this paper, we show by example that proxy signals from a com-
mercial sleep app have fine-grained detail about peoples’ natural
routines. We can start seeing people’s routines in their natural set-
tings, without some of the biases from controlled lab settings. As we
discuss in subsection 3.2, secondary data from an external platform
often cannot provide context and causes behind different behaviors
like other short-term studies [6, 25, 37], as the data collection began
a decade ago. However, as we have shown through our analyses,
such datasets still complement pre-existing knowledge, deepen our
understanding of current design flaws and unmet user needs, and
inform the design of future behavioral systems.

While not everyone has access to longitudinal sleep records,
this method of investigation, using a proxy signal to investigate
long-term natural routines, is not limited to just sleep data. This
method can be applied to other secondary datasets such as messag-
ing data or internet usage. While such datasets may not inherently
be purposed to track, they inherently contain other behavioral in-
formation and can be repurposed to investigate natural routines.
The tools for it already exist—Sochiatrist can extract users’ pre-
existing natural messaging data in a privacy-sensitive way [72] and
GLOBEM contains multidimensional, long-term tracking data from
cross-institutions [107]. Cross-dataset investigations could also in-
form new data-driven, long-term personas [20] which designers
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can utilize to investigate long-term user needs. Thus, investigating
long-term behavioral data is no longer limited by the lack of data
or feasibility [17, 47, 56, 57, 73], but rather by the approaches we
choose and the trade-offs we are willing to accept.

5.6 Limitations

One of the major limitations in this study is that we are unable to
further contextualize the users. Unlike controlled studies which
can interview and survey their users, analysis of a naturalistic, sec-
ondary dataset whose collection started many years ago is unable
to cross-check the reasons behind behavioral changes. Thus, this
study serves to complement pre-existing knowledge, not to replace
it. In addition, because Sleep as Android allows users to record
sleep data with the method and device of their choice, broader
insights on the efficacy of specific sleep technologies is limited.
Further investigations are needed to understand associations with
user engagement and recording behaviors.

There could also exist an unmeasurable bias from investigating
a subset of users with records at least 120 days long, especially if
regularity in recording is associated with regularity in sleep. Thus
using weekly A = 7 routine as a baseline for future studies should
be qualified. Even the subset of users who find, download, and
regularly use the app are not a random sample of people who sleep,
but rather people with some inherent interest in understanding or
improving their sleep, limiting the ability for us to generalize any
findings from the dataset.

6 Conclusion

By studying a large sample of sleepers for long periods of their
lives, we have identified both common regularity patterns in some
sleepers, as well as different variations of regularity in many other
sleepers. The weekly pattern is common, where the day of week
moderates when someone sleeps, but there are cycles less than a
week and cycles more than week. Some individuals have shown to
have asymmetrical cycles (wave-like patterns), shifting their sleep
later over a couple of weeks before resetting back to the original
sleep time. However, even for a single individual, the cycle of regu-
larity can change over the period that they track, as we have seen
clear transitions between one pattern of sleep to a new pattern,
with different variance and sleep times, after a few months. As we
have noted, changing sleep is normal behavior. So the character-
ization of regularity for someone who monitors their sleep for a
while depends both on the time period in their life and the length
of cycle, A, in the analysis.

Using technology for long-term sleep tracking has allowed us to
observe a broader existence of regularity. Apart from the clinical
definition, differences between consecutive days or single days
compared to an average, there is a concept of repeating cycles.
And even those repeating cycles can change into a different set of
repeating cycles, over a person’s lifetime, making sleep tracking
more interesting as a long-term affair. As we design technology for
sleep, these lessons reveal that sleep is rarely a normative behavior,
so taking a broader view of cyclical patterns can better adapt the
technology for our complex lives.
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