

https://doi.org/10.1093/sleepadvances/zpaf008 Advance access publication 12 February 2025 Research Methods, Protocols, Procedures

Research Methods, Protocols, Procedures

Dynamic impacts of sleep disruption on ecologically assessed affective, behavioral, and cognitive risk factors for suicide: a study protocol

Melanie L. Bozzay,^{1,2,*,†} Michael F. Armey,^{1,3,†} Leslie Brick,^{1,1} Nicole Nugent,^{1,3} Jeff Huang,⁴ Andrea B. Goldschmidt,⁵ Heather T. Schatten,^{1,3} Jennifer M. Primack^{1,6} Jared M. Saletin^{1,7},¹⁰

Abstract

Diminished sleep health is a known warning sign for suicide. However, the contexts and time periods within which diminished sleep elevates suicide risk are unknown. Modeling the complex process by which diminished sleep health impacts daily functioning and establishing proximal suicide risk factors can aid in addressing these important knowledge gaps. This paper describes the methods and research protocol for a study that aims to elucidate the nature of the sleep-suicide relationship and develop an integrated model of proximal suicide risk. Participants will be 200 adults at high risk for suicide recruited from a psychiatric inpatient unit. They will complete a baseline assessment including clinical interviews and self-reports, and laboratory tasks with concurrent electroencephalography to phenotype-relevant risk processes. This baseline assessment will be followed by 4 weeks of ecological momentary assessment and digital phenotyping, coupled with assessments of sleep via a wearable used to generate a minute-by-minute metric of cognitive effectiveness using the Sleep Activity, Fatigue, and Task Effectiveness algorithm index. Follow-up assessments will be conducted 1-, 3-, and 6-months post-hospital discharge to determine how the developed proximal model of risk prospectively predicts suicidal ideation and behavior. The results of this study have the potential to greatly enhance understanding of how and why diminished sleep health is related to real-world fluctuations in suicide risk, knowledge that can inform efforts to better prevent, and intervene to reduce suicides.

Key words: sleep; suicide; EEG; EMA; SAFTE

Statement of Significance

Diminished sleep health is a known warning sign for suicide. However, the contexts and time periods within which diminished sleep elevates suicide risk are unknown, limiting the clinical utility of this warning sign. The study described in this paper will address these important knowledge gaps by using a combination of experimental, psychophysiological, and intensive longitudinal assessment methods. The results of this study have the potential to greatly enhance understanding of how and why diminished sleep health is related to real-world fluctuations in suicide risk, knowledge that can inform efforts to better prevent, and intervene to reduce suicides.

Suicide is a significant public health problem, resulting in the deaths of approximately 800 000 people worldwide every year

[1]. As patients are 134–213 times more likely to die by suicide in the month following discharge from a psychiatric inpatient unit,

Department of Psychiatry & Human Behavior, Alpert Medical School of Brown University, Providence, RI, USA,

²Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA,

³Department of Psychosocial Research, Butler Hospital, Providence, RI, USA,

⁴Department of Computer Science, Brown University, Providence, RI, USA,

⁵Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,

⁶Center of Innovation Long Term Services and Supports, Providence VA Medical Center, Providence, RI, USA and

^{&#}x27;Sleep Research Laboratory and COBRE Center for Sleep and Circadian Rhythms in Child and Adolescent Mental Health, E.P. Bradley Hospital, Providence, RI, USA

[†]These authors indicate co-first authorship. Both authors have contributed equally to this manuscript.

^{&#}x27;Corresponding author: Melanie L. Bozzay, Department of Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, 1960 Kenny Avenue, Columbus, OH 43210, USA. Email: Melanie.Bozzay@osumc.edu.

Schematic of SAFTE Model

Sleep, Activity, Fatigue and Task Effectiveness Model

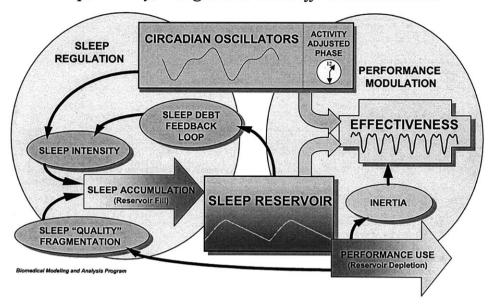


Figure 1. Schematic of SAFTE Model. Reproduced from Hursh et al. [21] with permission from Aerospace Medical Association.

critical transitions in care are a time period of particularly elevated risk [2-4]. Unfortunately, although there are evidence-based treatments for suicide risk [5, 6], there are currently no reliable strategies for delivering appropriate and timely interventions to alleviate an escalation to a suicidal crisis (i.e. intensification of suicidal ideation [SI] or behavior [SB]), making suicide prevention during this time a notable challenge. In support of these efforts, multiple theoretical, conceptual, and statistical models have been developed to anticipate suicide risk to aid in targeted intervention delivery [7]. However, these models generally rely on distal risk factors, that, while effective at identifying general groups of at-risk individuals, cannot identify specifically who is at risk of engaging in SB, and when those risk periods will occur [8]. Thus, there is a pressing need to understand the processes that may indicate proximal risk for suicide that can be implemented in clinical settings in support of broader intervention and prevention strategies.

Diminished sleep health [9] (for our purposes, short sleep time, poor sleep quality, irregular sleep patterns, and/or circadian misalignment) is a known warning sign for SI and SB [10] and thus may be a risk factor that could inform the development of proximal models including interventions to reduce SI and SB [11]. Short or poor quality sleep [12], nightmares [13], and insomnia symptoms [14] can predict SI 1-7 days later. Difficulty sleeping can also predict death by suicide a week later [15], even after controlling for depression. Critically, some studies find that atypical sleep precedes increases in suicide risk, but not vice versa [12, 14]. These findings collectively implicate atypical sleep as a proximal risk factor for SI and SB. However, current models lack understanding of the nature of this sleep-suicide risk relationship. Our proposed study aims to address this gap.

As described above, sleep health is an intrinsically multidimensional construct [9]. Yet, existing studies tend to examine single aspects of atypical sleep in relation to suicide risk. Such markers include both perceived disruption (e.g. insomnia symptoms or subjective complaints) and manifest changes to sleep itself (e.g. decreased duration, fragmentation, elongated sleep onset, etc.) [16-18] Regarding sleep timing, epidemiological research implicates eveningness (e.g. the behavioral tendency or subjective preference for going to bed and rising late) in more violent SB as well as more irregular circadian patterns linking to greater SI/SB [19]. Yet, surprisingly few studies have systematically examined the role of sleep timing in suicide risk which given the role of circadian rhythms and sleep timing in mental health writ large [20], may be a major oversight. Taken together, while each of the studies implicates a single aspect of sleep, the lack of a structured multidimensional approach consistent with a sleep health framework intrinsically limits the applicability of this data to understanding the heterogeneous and temporally structured patterns of SI/SB known to be at work [21].

Existing models attempt to explain this link between sleep and suicide via psychological constructs (e.g. sleep-related exhaustion), yet the full cognitive mechanisms involved remain elusive [22]. Thus, with this backdrop of sleep health as a complex determinant of SI/SB, we turn to a core proposal that atypical sleep increases the proximal risk for SI and SB via deleterious impacts on daily functioning. The impact of sleep disruption on waking behavior is well known [21]. For example, even subtle erosion of sleep over multiple days can dramatically impact alertness [23]. Sleep loss alters nearly every higher-order brain system [24]. Sleep disruption itself has even been positioned as a transdiagnostic factor and intervention target across psychiatric conditions [25]. Given that the definition of atypical sleep may vary across studies, quantifying its impairment in a way that integrates disparate multidimensional sleep health components is of paramount interest for optimum risk detection.

To address this conundrum of precise quantification of a multidimensional framework, we propose to leverage a mathematical model that integrates the disparate forces regulating sleep health: the Sleep Activity, Fatigue, and Task Effectiveness (SAFTE) model (see Figure 1) [21]. SAFTE, a biomathematical model, originates from and is extensively validated by the U.S. Army Research Laboratory. Original SAFTE was conceived to aid in reducing operator errors in mission-critical scenarios (e.g. Department of Transportation, Federal Aviation Administration, U.S. Air Force). SAFTE takes multiple nights of sleep-wake behavioral patterns as input, and multiple underlying processes including sleep homeostasis accounting for accrued "sleep debt" as well as the intrinsic circadian process which together make up the two-process model of sleep-wake regulation [26] while modeling moment-by-moment levels of sleepiness and sleep inertia. By overlaying these processes upon an individual's sleep-wake history, the model estimates moment-to-moment (in 1-minute resolution) fluctuations in cognitive effectiveness [21]. The SAFTE model has been extensively validated using a wide battery of cognitive tests, with results showing that worse SAFTE scores correspond to decrements in performance on a range of tasks, suggesting SAFTE indexes changes in cognitive effectiveness in general [21]. Not only can these estimates be considered retrospectively across a multinight sampling window to probe the cognitive state which coincided with a prior event, but they can be projected into the future to estimate the within-subject consequence of future sleep-wake scheduling over multiple days.

Our study will be the first to apply the SAFTE model framework outside vigilance readiness as a proxy for vulnerability to suicide risk. Our rationale is rooted in a conceptual model that we have previously posited pointing to a cascade of downstream cognitive and affective processes impacted if sleep-dependent vigilance is compromised [27, 28]. Our model presupposes that sleep-related cognitive fatigue impairs cognitive control processes implicated in SI and SB that regulate emotions and determine goal-directed behavior [29]. Thus, we expect that lower SAFTE scores will dynamically exacerbate attributes of risk states that intensify proximally to SI/SB, especially within suicide-relevant contexts.

A growing body of evidence supports our claim that sleep disruption increases suicide risk through downstream consequences to cognitive, affective, and social functioning. Shorter sleep duration over multiple consecutive nights predicts impairments in cognitive processes (i.e. cognitive control; attentional biases) [30] that are theorized to proximally increase the risk for SI/SB [31, 32]. Moreover, shorter sleep duration is associated with greater negative affect within stressful contexts [30], noteworthy as there are clear emotional precipitants to increases in SI and SB [33-38]. Longer sleep onset latency, shorter duration, and insomnia have also been linked with increased negative peer and interpersonal relationship perceptions [27, 39] and harmful relational behaviors [30, 40] during stressful social situations. These findings are notable as patient distress due to isolation from social supports and conflict frequently occurs in the days prior to SB [41-43]. Research with high-risk adolescents has integrated these distal and proximal social processes in online social messaging data (i.e. text messages, Facebook, Instagram, and Twitter), with distal childhood maltreatment predicting conflictual messages and sending symptomatic messages on days of SI/SB [44]. However, no study to date has comprehensively examined interrelationships between atypical sleep, these risk processes, and SI and SB. We propose to use SAFTE as a marker of reduced cognitive status resulting from an individual's specific multidimensional sleep-wake patterns which may track not only these proposed downstream cognitive, affective, and social processes but the suicide risk they expose.

If successful, our framework may also uncover particular neurophenotypes particularly prone to both more atypical sleep and greater suicide risk. For example, research indicates that traitlevel tendencies toward risky decision-making [45] as well attention and impulsivity [45], and emotional reactivity and regulation [46, 47] may distinguish risk for SI/SB. We propose these traitlevel differences contribute to SI/SB by further exacerbating sleep health and, through doing so, altering the sleep-wake behaviors experienced [30, 48] and the vigilance-gated cognitive ability resulting. Using a marker of this sleep-wake-resulting cognitive

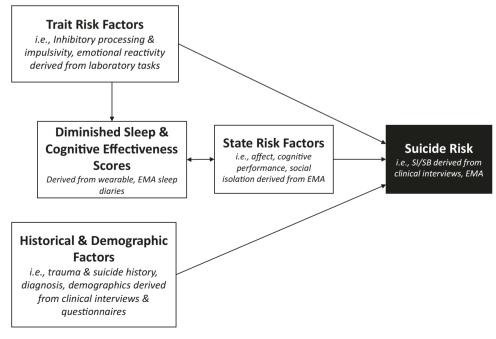


Figure 2. Proposed conceptual model.

state, like SAFTE, to characterize moment-by-moment risk may in our view—aid in distinguishing these phenotypic differences.

Current Aims

The current paper describes the methods and research protocol for a study that seeks to elucidate the nature of the sleep-suicide relationship and develop an integrated model of proximal suicide risk (see Figure 2) building on the literature described above. Our first aim is to characterize relationships between cognitive effectiveness (operationalized by the SAFTE score derived from actigraphic sleep-wake patterns) and SI over time among psychiatric inpatients admitted for SI or SB following hospital discharge. We expect that poorer cognitive effectiveness (i.e. lower SAFTE scores) will be associated with an increased risk of momentary SI, especially during moments when an individual's cognitive effectiveness is lower than it typically is (H1A). We will also seek to leverage the moment-by-moment resolution of the SAFTE metric to identify the time window within which cognitive effectiveness optimally predicts SI (Exploratory H1B). Finally, we hypothesize that the addition of state-level risk factors will improve the prediction of momentary SI (H1C). Our second aim is to characterize relationships between cognitive effectiveness and state and trait suicide risk factors. We expect that phenotypic trait-risk factors will be associated with lower average levels, greater variability, and lower inertia of cognitive effectiveness scores over time (H2A). We also expect that lower cognitive effectiveness will be associated with worse state suicide risk factors, and vice versa (H2B). Finally, our exploratory third aim is to develop an initial integrated, sleep-based model of suicide risk that can be replicated and validated in future studies. This model will combine cognitive effectiveness scores with measures of state and trait suicide risk factors to develop a model of proximal suicide risk.

Methods and Analyses

Participants

Approximately 240 participants will be recruited for this study, reflecting a target sample size of 200 plus 20% over recruitment to account for expected attrition. Participants will be recruited from the psychiatric inpatient units at Butler and Kent Hospitals in Providence, RI. Participants must have been hospitalized due to SI or SA in the week prior to admission, and physicians must consent for the study team to approach the patient. They must also be aged 18-50 to control for brain differences in aging. They must also be able to speak, read, and understand English well enough to complete study procedures, and be comfortable with the use of smart-device technology. Exclusion criteria include current psychotic symptoms or cognitive impairment severe enough to impair adequate participation in study procedures. Individuals with a Bipolar I diagnosis are also ineligible to participate due to qualitative differences in sleep processes.

Procedures

Study participation will involve the collection of multimethod data across several study appointments. At baseline, we will use laboratory and clinical assessments to phenotype trait-risk factors. We will assess state risk factors and suicide outcomes during a 4-week intensive longitudinal assessment period following discharge from a psychiatric inpatient unit, consisting of ecological momentary assessment (EMA) coupled with digital phenotyping methods and actigraphy using a wearable device. Follow-up assessments will be conducted at 1-, 3-, and 6-month postdischarge to collect suicide outcome data and other measures of interest.

Screening and enrollment.

Following consent from the treating physician, research assistants will screen newly admitted patients' charts using the electronic health record. Screening will be conducted under a Protected Health Information waiver obtained through the Butler Hospital Institutional Review Board. Patients meeting initial inclusion and exclusion criteria will be approached by research staff and provided a description of the study. Research staff will carefully explain all aspects of the study to potential participants, including risks and benefits, its voluntary nature, and the expected duration of participation. Patients who provide written consent will complete additional study screening procedures to confirm eligibility. Suicide-related eligibility criteria will be verified by the Columbia Suicide Severity Rating Scale [49], diagnostic criteria by the Structured Clinical Interview for the DSM-5 [50], and treatment utilization by the Treatment History Interview-4 [51].

Baseline Assessment.

Participants will complete a 3-hour baseline assessment, including clinical interviews and self-reports, and laboratory assessments with concurrent psychophysiology. Assessments will be scheduled 2-3 days post-admission to lessen the impact of distress caused by hospitalization and will occur during periods of inactivity in the inpatient units. At the conclusion of the baseline assessment and post-discharge, participants will be given the wearable device and complete a brief training about how to install and use the mobile application that delivers EMA.

Intensive Longitudinal Assessment Period.

During the 4-week intensive longitudinal assessment period, participants will wear a consumer-grade activity monitor (the Readiband, Fatigue Science, Vancouver, BC, Canada). They will also be administered five brief EMA surveys per day that take approximately 2-5 minutes to complete. Two of these surveys serve as sleep diaries and are administered via morning and evening check-in surveys. The remaining three surveys are prompted at random intervals during the day. Finally, participants will complete an Emotional Go/No-Go (EGNG) task delivered via EMA once per day.

Follow-up Visits.

Follow-up visits will take place at 1-, 3-, and 6-months postbaseline. During these visits, participants will complete a brief battery of self-report and interview assessments (see Table 1). Participants will return the wearable device at the 1-month follow-up either in-person or via mail. All assessments were designed to be able to be administered remotely if needed to accommodate participant needs, and to adhere where appropriate to public health guidelines pertaining to the coronavirus disease 2019 (COVID-19) pandemic.

Description of data collection procedures Clinical interviews and self-reports.

Participants will complete a series of self-report assessments and clinical interviews at baseline and follow-ups (see Table 1) to assess relevant clinical symptoms, phenotypes, aspects of sleep health, and study outcomes.

Table 1. Self-report and interview assessments

Construct	Source	Time po	int		
		BL	1 m	3 m	6 m
Distal risk factors					
Life experiences and san	nple characteristics				
Prior SI and SB	Columbia Suicide Severity Rating Scale [49], Modified Scale for Suicide Ideation [52]	~	~	~	~
Psychiatric diagnosis	Structured Clinical Interview for the DSM-5 [50], electronic health record	~			~
Trauma history	Childhood Trauma Questionnaire [53]	~			
Hopelessness	Hopelessness Scale [54]	~	~	✓	~
Borderline traits	McLean Screening Instrument-BPD [55]	~			
Substance use	Alcohol Use Disorders Identification Test [56], and Drug Use Disorders Identification Tool [57]	~	~	~	~
Depressed mood	Beck Depression Inventory-II [58]	~	~	✓	~
Suicide risk factors	Interpersonal Needs Questionnaire [59], Acquired Capability for Suicide Scale [60]	~	~	~	~
Self-report trait phenoty	pes				
Reward sensitivity	Behavior Inhibition/Behavior Activation Scale [61]	~			~
Impulsivity	UPPS-P Impulsive Behavior Scale [62]	~	~	~	~
Emotion regulation	Difficulties in Emotion Regulation Scale [63]	~	~	~	~
Sleep					
Sleep disorders	Sleep Disorders Screener [64]	•			
Perceived sleep disruption	Disturbing Dreams and Nightmare Severity Index [65], Insomnia Severity Index [66]	~	~	~	~
Sleep phenotypes	Pittsburgh Sleep Quality Index [67], Morningness-Eveningness Questionnaire [68], Munich Chronotype Questionnaire [69]	~	~	~	~
Suicide and related outc	omes				
SI, SB, and NSSI	EMA, Columbia Suicide Severity Rating Scale [49], Self-Injurious Thoughts and Behaviors Interview [70]	•	~	~	~
Treatment history	Treatment History Interview-4 [51]	~	✓	~	~

BL = Baseline.

Laboratory-based assessments.

Following clinical interviews and self-reports, participants complete 90 minutes of laboratory-based assessments in a quiet room dedicated to that purpose as part of the baseline assessment to measure trait constructs. We will counterbalance tasks to reduce systematic confounds from task sequencing. Behavioral indices will be calculated from the Iowa Gambling task and the EGNG task. Event-related potentials will be recorded during the EGNG and the Emotional Reactivity and Regulation Task.

Decision-making.

The Iowa Gambling Task [71] is a computer-administered, behavioral measure that will be used to assess risky decision-making. Participants have four decks of cards, are instructed to choose a card from any deck, and that they can switch between decks as often as they like. Participants are given \$2000 in-game currency to start and told to maximize their profits over 100 trials by selecting cards from one of four decks [72]. Each card chosen results in either the winning of a hypothetical monetary reward amount or a monetary win followed by a loss. Decks A and B are termed "disadvantageous," while Decks C and D are "advantageous." Outcome measures include (1) total net score (difference between total advantageous and total disadvantageous selections) [71] and (2) total net score on reward and total net score on punishment variants (to identify reward and punishment sensitivity and learning) [73]. The Iowa Gambling Task (IGT) has been used extensively to evaluate decision-making in many neuropsychiatric conditions [74], and in relation to suicide attempts (SAs) [75] and substance use [76, 77].

Attentional Bias and Response Inhibition.

An EGNG task for event-related potential studies [78] will be used to measure attention (e.g. emotional processing) and cognitive control (e.g. response inhibition, conflict detection). The task requires inhibitory control to respond/inhibit responses to word features (normal: Go vs. italicized: No-Go), not emotional content (negative vs. neutral vs. positive). The task includes 32 neutral (e.g. umbrella), 32 negative (e.g. misery), and 32 positive (e.g. applause) words from the Affective Norms for English Words [79]. Conditions are matched on word length and frequency of use in the English language. Negative and positive words are matched on valence and arousal. The task begins with 20 practice trials, and contains 5 blocks for each word category, with 20% No-Go trials to establish a prepotent response. Trials will be presented for 1400 ms, with a 750-1000 ms intertrial interval. Word category sequence will be counterbalanced across participants, and specific No-Go words will differ across blocks. We use words (vs. faces) to include stimuli that are personally salient for participants with histories of SB (to elicit prolonged behavioral effects [78, 80]) that can also be easily administered via EMA. We will

calculate behavioral indices of impulsive responding (percentage of no-go trials with commission errors and per emotional condition), attentional bias (median reaction time to go trials and per emotional condition), and event-related potential indices (described below).

Emotional Reactivity and Regulation.

Participants will complete the Emotional Reactivity and Regulation Task [81], an event-related potentials task that has been used to measure indices of emotional reactivity and regulation in suicidal patients [47]. The task will include 20 neutral, 60 dysphoric negative, and 60 positive color images from the International Affective Picture System [82], with positive and negative images matched on valence and arousal. The task will include five blocks. In the first block, participants passively view neutral, negative, and positive pictures (20 pictures of each valence; emotional reactivity block), with picture type distributed pseudorandomly (with no more than 2 pictures of each valence in a row). The following four blocks will be emotion regulation blocks (40 pictures each). Blocks will contain either positive or dysphoric negative stimuli, with instructions to increase or decrease the intensity of emotions evoked by the image (e.g. increase-positive, increasenegative, decrease-positive, decrease-negative), with the order of emotion regulation blocks counterbalanced across participants. Prior to each block, participants will receive instructions to either decrease or increase the emotional response to pictures viewed (without restricting to specific regulation strategies, but with examples of strategies provided) used in prior research [81]. Block instructions ("view passively," "increase," or "decrease") will be displayed for 1000 ms before each trial. A fixation cross will be presented on the screen for 1000 ms. Images will appear 500 ms after the offset of the fixation cross and remain on the screen for 3000 ms, with a 1750-2250 ms inter-stimulus interval. We will calculate event-related potential indices derived from this task (described below).

Electroencephalography data acquisition and processing Data acquisition.

Continuous EEG activity will be recorded during the emotional go/no-go and emotional reactivity and regulation tasks. EEG activity will be recorded using the 32-channel Biosemi ActiveTwo System, with active electrodes placed via the International 10-20 system. Data will be referenced to a ground formed from a common mode sense active electrode and driven right leg passive electrode. Electrodes placed lateral to the external canthi will be used to detect horizontal eye movements, and electrodes placed above and below the eyes will be used to detect eye blinks and vertical eye movements. EEG and electro-oculogram data will be low-pass filtered using a fifth-order sinc filter with a half-power cutoff at 204.8 Hz and digitized at 1024 Hz with 24 bits of resolution. Stimuli will be presented on a flat-panel display using E-Prime, with behavioral responses collected with a Psychology Software Tools Chronos response box linked to E-Prime.

Data Processing.

Offline data processing will be performed in Matlab 9.2 (The Mathworks, Inc.) using the EEGLAB [83] and ERPLab [84] Toolboxes. Data will be re-referenced to average mastoids, and bandpass filtered from 0.1 Hz to 30 Hz. Independent component analysis will be performed to identify and remove components associated with eyeblink and eye movement activity, as assessed by visual inspection of waveforms and scalp distributions of components.

EEG data will be segmented for each trial using settings specific to each task (emotional go/no-go task: 200 ms before and 800 ms after stimulus response; emotional regulation and reactivity task: 200 ms before and 1700 ms after stimulus onset) with a baseline correction of 200 ms. Segments of data containing artifacts will be removed by means of semi-automated ERPLab algorithms [85].

Event-related potential components.

For the emotional go/no-go task, we will extract the P3a (indexing attention to stimuli valence, and inhibitory control), the average activity at 300-600 ms post-stimuli (at frontal or parietal sites), and the N2 (indexing conflict detection) at 200-350 ms poststimuli (at frontal sites) [86]. For the emotional regulation and reactivity task, we will extract the Late Positive Potential, the average centroparietal activity between 400 and 1000 ms [87, 88].

Estimates of daily sleep-wake rhythms.

Actigraphy will be used in conjunction with EMA-based sleep diaries (described below) to provide an estimate of sleep-wake patterns. Due to our focus on SAFTE as an estimate, we will use the SBV2 ReadiBand (Fatigue Science, Honolulu, HI) wrist-worn actigraph device specifically tuned for implementing this biomathematical model [89]. The ReadiBand will be worn on the nondominant wrist. The ReadiBand contains a 3D accelerometer sampled at 16 Hz. Activity data are collected in 1-minute epochs. Participants receive their watch immediately upon hospital discharge and the data are wirelessly downloaded to an iPad at the 1-month follow-up.

Nonwear windows are detected by the Readiband software and together with sleep diaries used to audit the activity estimates. We will use Fatigue Science's zero-crossing-mode-derived sleep estimation to derive estimates of sleep parameters, which shows 93% accuracy in classifying sleep-wake periods relative to polysomnography [89]. We will use Fatigue Science's detected and diary-verified nonwear windows to estimate sleep-wake patterns in the open-source GGIR R-package [90]. GGIR is a device-agnostic validated workflow for deriving sleep-wake from the z-axis angle of accelerometer data yet recent advances have allowed the import of count data like that derived from Readiband. While GGIR is ideal for its open-science framework of reproducibility, should GGIR's pipeline prove incompatible with Readiband counts, sleep-wake estimates from Fatigue Science's proprietary software will be used in its place [89]. Momentary EMA prompts will be used to assess compliance with wearing the Readiband throughout the day (assessing battery life, technical issues, wristband on/off), and researchers will communicate with participants to rapidly correct any issues that need to be remedied (i.e. battery dies). Participants are given a charger to charge the watch battery and are reminded by staff to charge it weekly during periods of brief inactivity, so as not to impact sleep monitoring at night (i.e. while showering). EMA-based sleep diaries, together with manual inspection of raw accelerometer data from the Readiband, will be used to confirm daytime naps where present and exclude off-wrist windows. Derived variables include estimations of total sleep time, wake after sleep onset (i.e. total number of minutes that a person is awake after initially falling asleep), number of awakenings, number of awakenings per hour, sleep efficiency (i.e. the ratio between the time a person spends asleep and time in bed), sleep onset latency (i.e. the duration in minutes from attempting to fall asleep to actually falling asleep), sleep onset, onset variance, and sleep-wake time. While we focus on traditional sleep-wake estimated variables in this study, we will also

include exploratory measures of rest-activity cycles derived from the count actimetry data itself, including but not limited to interdaily stability, interdaily variability [91], as well as the most and least active 5 hours (M5/L5), and estimates of circadian rhythmicity in activity (e.g. cosinor-fit acrophase, mesor, amplitude).

SAFTE estimation.

From these sleep-wake estimates, we will then derive momentby-moment SAFTE scores in 1-minute resolution using the recent SAFTEr package in R [92]. SAFTEr is an open-source implementation of the SAFTE model which can be run on any deviceestimated multinight sleep-wake pattern [92]. The SAFTE algorithm requires a 3-day "burn-in" period to generate valid estimates [21]. Thus, our data will implement open-source tools throughout its entire processing pipeline to maximize reproducibility. As above, our analytic plan favors open-science solutions wherever possible; however, the proprietary SAFTE estimates from Fatigue Science serve as a fallback approach should unforeseen issues arise.

Ecological momentary assessment EMA design.

EMA will be administered through Ilumivu's HIPAA-certified mEMA system, which provides a cross-platform (iOS and Android) application for the delivery of multiple simultaneous scheduled EMA protocols. Participants will complete random, event, daily, and cognitive task EMA prompts. Random prompts will be administered at random times, three times a day, at least 2 hours apart, and will be available for 30 minutes. Participants will also be trained to self-initiate event prompts (event-cued assessments) when they experience SI or SB urges or engage in SB. Random and event-cued assessments will be identical to facilitate data harmonization and analysis. Participants also will complete a morning and an evening EMA survey with items largely identical to the random and event surveys, but including additional items needed to compute sleep diary metrics. The mEMA app, installed on participants' own phones, will regularly upload data to the Ilumivu servers using encrypted communications. Uploaded data will be viewable only by the research team.

EMA Items.

The EMA protocol will be informed by our prior EMA studies of suicide and self-harm behavior [34, 93-95]. PANAS-X [96] derived items assess current affect and we will use items derived from the Response Styles Questionnaire [97] to quantify brooding as a metric of repetitive negative thinking. Questions will also assess for substance use, recent stressful situations, and social engagement/ isolation. We will also ask questions about napping during the day and consumption of caffeine and other substances (i.e. alcohol, cannabis) that can impact alertness. We will use a series of questions derived from the Modified Scale for Suicide Ideation [52] and the Columbia Suicide Severity Rating Scale [98] to assess for current and recent SI and SB. All items ask about "right now," with the exception of the items that ask about SB, naps, and medication consumption, which ask about the last 2 hours. Our battery includes an integrated safety protocol to direct participants to their treatment team and/or emergency services should we identify suicide risk.

EMA-based Sleep Diary.

One additional morning assessment will serve as a sleep diary, assessing subjective sleep quality, nightmares, medication use, caffeine consumption, and treatment utilization from the prior day. There will also be an evening assessment to ask about behaviors that can impact sleep prior to bed (i.e. substance use, sleep medications, daily naps). During random EMA prompts (described above), we will also ask questions about napping and consumption of caffeine and other substances (i.e. alcohol, cannabis) in the prior 2 hours that can impact alertness.

EMA-based Cognitive task.

We will deliver an adapted, 3-minute version of the EGNG task via the mEMA system once per day. We chose to administer the task once per day to reduce practice effects and improve participant response rates. The task will be administered equally between morning, afternoon, and night periods to capture circadian variation in cognition. Participants will complete three practice trials, followed by a neutral, negative, and positive word 32-trial word block (three blocks). Blocks will be randomly selected from three possible blocks per condition (with the same words, but different words as no-go trials to reduce practice effects), and blocks will be counterbalanced across administrations. Reaction times and commission errors will be calculated overall and within emotional conditions to capture attentional biases and inhibitory control per condition. Consistent with procedures used in studies with EMA tasks [99], after completing the task, we will assess via a single item if participants were interrupted during the task. We will also examine device usage telemetry through mEMA (sensors, mEMA as app focus) and Sochiatrist (incoming and outgoing texts and social media) to identify task distraction and will flag tasks for removal when response times are more than two standard deviations from the participant's mean.

Online social networking and text messaging.

The Sochiatrist, "social psychiatrist," application will be used to collect online social networking and text message data. The application facilitates retrospective data extraction, in this case encompassing messages occurring for the month prior to baseline and throughout the EMA period, and may be used with different device types, operating systems (i.e. iOS, Android, web), and online social networks (e.g. text messages, Facebook, Instagram, Twitter, WhatsApp) [100, 101]. Online social networking data will comprise text-based direct messages, group chats, or the participant's own public posts through SMS/MMS text messages, iMessage, Instagram, Facebook Messenger, SnapChat, Discord, X (formerly known as Twitter), WhatsApp, and posts for those platforms, for example, Tweets or "wall comments." Some data may not be available for participants who do not use a mobile device or a particular service. Sochiatrist extracts data with consented access through the participants' accounts and devices and therefore does not depend on API permissions; upon data collection, it removes nontext content, and replaces all names with deidentified numeric codes. Downloaded data are temporarily stored on the study computer while Sochiatrist strips participant identifiers. The original file will be securely deleted after the de-identified file is created. All data are timestamped for linkage to other data. Sochiatrist data includes (1) sentiment-based features derived from a compound score of sentiment, ranging from +1.00 to -1.00, as calculated via the VADER sentiment lexicon [102]; (2) content-independent features calculated based on messaging metadata (e.g. total messages sent) that do not require the text of a message or information about sender or recipient; and (3) content-dependent features including counts of specific words and phrases.

Compensation.

Participants enrolled in the study will be paid for scheduled assessments. They will receive \$50 for the Baseline assessment, \$25 for the 1-month assessment, \$50 for the 3-month assessment, and \$100 for the 6-month assessment. Participants will also receive \$1 for the completion of each randomly cued EMA (3/day) as well as \$1 for each of the morning and evening sleep assessments. Participants will also be compensated \$2 for each EMA cognitive task that they complete (1/day). This results in a total EMA compensation across all 4 weeks of \$196. Participants will not be compensated for any event-cued assessments to reduce the incentive to complete assessments for compensation only. We will provide a \$54 bonus for participants who complete at least 75% of the total assessments. In total, between scheduled assessments (\$225), EMA (\$196), and the EMA incentive (\$54), participants can earn up to \$475 for participation over 6 months, which we believe will aid retention but is not coercive.

Data analysis plan

Data management and confidentiality.

All staff with access to participant data and identifying information will be trained in the management of sensitive clinical information. Data will be stored on secure servers, which undergo daily backups. Participant identifying information will be stored separately from study data in a password-protected database. Any paper records will be stored in a locked file cabinet within a locked office. To ensure the reliability and validity of interview assessments, all interviews, assessments, and sessions will be, with participant consent, audio recorded.

EMA data will be collected via the mEMA mobile application, an HIPAA-compliant platform for the collection of EMA data and secure transmission of those data to a cloud-based central server with dedicated data backup. The app protects participant data by temporarily storing participant responses on the device in an encrypted database. Transfer of data to the cloud is through an encrypted secure socket layer connection that cannot be read even if intercepted by a third party (i.e. a man-in-themiddle attack). Only study personnel will be able to access EMA responses.

As noted above, sleep and activity data will be collected with the Fatigue Science Readiband. There is no personally identifiable information stored on the device. Should a participant's ReadiBand be lost or stolen, data on the device will be inaccessible without the username and password linked to the device. However, if accessed, the only data that could possibly be disclosed would be activity and sleep data, which is the same kind of data any commercial sleep or activity monitor user might produce. Data will be downloaded to a secure tablet device at the end of the study. Data will be downloaded to a secure tablet device at the end of the study.

Several steps will be taken to ensure the confidentiality of online social networking data collected via Sochiatrist, as noted above. We will show the de-identified file to the participant to verify that the data are correct and that they agree to share their data. We will record if participants refuse to share online social networking data as a potential covariate in study models. The original file will be securely deleted after the de-identified file is created.

Primary outcomes.

Momentary SI, measured as a continuous outcome via EMA, with 0 representing no ideation and a value of 1-5 representing an increasing severity of ideation, will be the primary outcome for Aim 1. The primary outcome for Aim 2 will be SAFTE scores, which will be preprocessed and averaged across 1-hour epochs during the participant's wake period. The primary outcome for Exploratory Aim 3 will be a composite score of suicide risk comprised of subscales calculated from the Columbia Suicide Severity Rating Scale [49], including SI intensity and all SBs (i.e. suicide attempts, aborted, interrupted, and preparatory acts), the presence of SI and SB events reported in the weekly EMA assessments, and suicide deaths. This approach facilitates a data integration and reduction approach that captures important aspects of suicide phenomenology and is designed to approximate a cumulative risk for suicide based on several variables, thereby increasing power, and mimicking operationalizations of suicide risk used in the broader literature [103]. A similar approach was previously used in prior research [103], where 21% of participants made an SA at 12-month follow-up, but more than twice that number (46%) reported an event based on a composite measure.

Analytic overview.

Prior to analysis, all data will be checked for errors and examined for statistical assumptions and relevant estimators will be employed as appropriate (i.e. logit, Poisson, zero inflation, etc.). All estimates will be accompanied by 95% confidence intervals (CIs). We will employ MPlus MPlus [104] due to its ability to test and fit complex models using a combination of categorical, count, and continuous variables as well as R and SAS to test models not supported by MPlus. We will adjust for multiple testing to account for false discovery rates using step-down procedures where appropriate [105, 106]. Ambulatory data from the Readiband will be preprocessed, reduced into epochs, and time aligned with EMA survey timestamps to permit time parameterization for statistical models. Psychometric properties (i.e. reliability, variance explained, model fit) of latent constructs will be carefully evaluated and if specific items do not load well on hypothesized constructs, alternative models will be employed using observed indicators. We will determine the reliability of constructs such as affect using multilevel factor analyses at both the state and trait levels. If a construct is not well represented as a single value, we will analyze variables separately. All time-varying variables will be disaggregated into within- and between-persons components to ensure that we are able to adequately separate variance related to stable "trait"-level characteristics (between-person variance) as well as temporal fluctuations and "state"-level characteristics (within-person variance).

Relevant covariates.

Analyses will consider the influence of potentially relevant covariates (i.e. age, gender, treatment adherence, past SA, sleep medication usage, and substance use). We will consider relevant characteristics captured via EMA such as response latency, situational context, day of week/time of day, adherence, etc. For all longitudinal analyses, we will assess for time trends and stationarity, including cyclicity within the day and across the week, as well as time between EMA prompts. As sleep/circadian patterns vary developmentally, we will also stratify analyses by age group where appropriate to examine whether relationships in our study vary as a function of developmental period [107].

Missing Data.

We will closely monitor missing data and study attrition throughout the project. We will apply missing data procedures where appropriate, as Mplus permits both frequentist (full-information maximum likelihood) and Bayesian estimation for models with missing data. Prior to analyses, all data will be examined for patterns and mechanisms of missingness to ensure missing data approaches are appropriate. Given the high potential for data to be nonrandomly missing (i.e. those experiencing acute distress may be less likely to complete assessments), we will carefully evaluate compliance rates and missing data as a potential predictor of our primary analyses. We will also evaluate whether there are other demographic or key differences among participants with lower compliance and/or among those who drop out early relative to those who don't.

Sample size calculation.

We conduct all power calculations with the assumption that a portion of our full sample size (N = 240) may be lost to attrition or other technological complications. Therefore, power was evaluated assuming that we will have data for 200 participants and we will overrecruit.

In Aim 1, the primary outcome (SI) will be measured via EMA on a continuum, with 0 representing no ideation and a value of 1-5 representing an increasing severity of ideation. We will use a general linear model (GLM), which flexibly accounts for repeated measures within person over time. To determine adequate power to test Aim 1 hypotheses, a series of simulations with 5000 replications for our most conservative two-level models were conducted consistent with empirical recommendations [108]. Specifically, the model contained a Level 1 predictor, representing the disaggregated momentary-level SAFTE score (within-person effect), and a Level 2 predictor, representing the person-centered SAFE score (between-person effect). Both predictors were assumed to have a standard normal distribution. The intraclass correlation (ICC) was assumed to be 0.3, the variance of the slope was set to 0.09, and the intercept–slope covariance was set to 0. Simulations also assumed a Type 1 error rate of 0.05 with a Level 1 sample size of at least 28 repeated assessments and a Level 2 sample size of N = 200 participants. These sample sizes were chosen because, while Aim 1a/1b will leverage momentary repeated measures within each day (with a max of four surveys per day for 28 days), Aim 1c will be conducted on the day-level aggregated data and thus will have a maximum number of 28 repeated measures per person. Thus, we decided to take a conservative estimate of power assuming we only have 28 repeated measures for 200 people, though we anticipate having a much larger number of repeated measures for Aim 1a/1b, which will provide greater power. Based on these simulations, we are well-powered (80%) to find effects as small as 0.08 (a very small effect) for the within-person standardized effect of SAFTE and an effect as small as 0.20 (a smallmoderate effect) for the between-person standardized effect of SAFTE on momentary SI.

For Aim 2, which is concerned with the hourly SAFTE score as the primary outcome, we rely on a recent Monte Carlo (MC) simulation study [109] showing that adequate power (>0.80) for Dynamic Structural Equation Modeling (DSEM) of a single process in which the random mean, autocorrelation, and residual variance are regressed on a predictor (with moderate effects) in a sample of N = 100 and as few as 50 repeated measures (T = 50). While it is difficult to provide a priori estimates of power for DSEM due to the complexity of dynamic multilevel autoregressive models, in the proposed study, SAFTE scores for N = 200 individuals will be assessed continuously each day. We will extract 12 values each day, resulting in a total of T = 336 per person. Under the MC simulationbased guidelines and assuming $\alpha = 0.05$ (i.e. Model 6) [109], with $N \times T$ of >67 000 observations, we are very well powered for estimation of the dynamic processes estimated in DSEM. For Aim 2b, models are set up identically to Aim 2a; however, these analyses are conducted at the day level and therefore contain T = 28 per person (N \times T = 5600). Even with T = 28, simulations demonstrate very good model performance for models with N = 200 and T as low as 10. We refer readers to Asparouhov et al. [110] for comprehensive coverage of power consideration for DSEM.

The primary outcome for Exploratory Aim 3 will be a composite score of suicide risk (see Primary Outcomes section), and power for calculations was based on effects observed in prior research. In one study, attention bias toward suicide-related words accounted for a moderate proportion of variance ($R^2 = 0.18$) in suicide attempts above and beyond common clinical predictors (i.e. history of mood disorder, history of multiple suicide attempt, severity of suicidal thoughts, and both patient and clinician prediction of a future suicide attempt) [111]. To provide conservative estimates, we conducted power for multiple linear regression with a continuous outcome representing our composite indexing suicide risk regressed on 10 predictors (i.e. factor scores extracted from trait and state variables, atypical sleep, and individual life experiences) using G*Power [112]. Assuming $\alpha = 0.05$, with a sample size of 200, we are powered (80%) to detect small to moderate effects (e.g. $f^2 = 0.03$ for individual coefficients or an omnibus $f^2 = 0.08$). This corresponds to the ability to detect as little ~8% total explained variance in the suicide outcome composite.

Data analyses

Our primary outcome for Aim 1 is momentary SI and the goal is to characterize relationships between SAFTE scores and SI over time. To evaluate this aim, we will use GLMs to model the effects of SAFTE scores on SI while accounting for the clustering of repeated measures within individuals during the EMA period. Cognitive effectiveness will be represented via SAFTE scores, which are preprocessed into hourly epochs and time aligned with EMA. SI will be conceptualized as a continuous outcome (with 0 representing no ideation and 1-5 representing increasing severity). Conceptualizing ideation severity rather than simply the presence/absence of ideation will facilitate an outcome with more variability and greater spread. Given that our sample comprises high-risk individuals, we anticipate that most will endorse some degree of SI during the study. All time-varying independent variables, such as SAFTE scores will be disaggregated [113] via grand mean and person mean centering to evaluate within-person effects (e.g. how someone looks relative to themselves) while controlling for between-person effects (e.g. how someone looks relative to others). For Aim 1a, the average SAFTE score during the 2 waking hours preceding the EMA survey will be extracted and aligned with EMA data via the timestamp. The between-/withincomponents [113] of SAFTE will be entered into the model to assess whether lower within-person SAFTE scores (representing moments when individuals have better/worse cognitive effectiveness than they normally do) are associated with higher SI while controlling for whether individuals who, on average, have lower SAFTE scores relative to others tend to report higher SI. For Aim 1b, to identify the optimal time window for which SAFTE scores are most salient for predicting SI, we will vary the lag used to derive SAFTE scores from 12 to 48 hours prior to the EMA prompt. To ensure that each of the comparisons is conducted on the same amount of data (i.e. lagging variables by 48 hours results in a smaller number of data points to draw from) and because the derivation of reliable SAFTE scores requires a burn-in period

of around 3 days, only data after the third day will be included to ensure that all models cover comparable spans of time. For Aim 1c, we will integrate our within-person state-level variables, into a model predicting day-level SI. This model will also include day-level SAFE score (running average of SAFTE scores aligned with the time of the cognitive assessment). To determine whether adding state-level predictors improves the variance explained in SI, we will use nested model comparison tests for a model that includes all predictors (full model) against a model that only includes SAFTE scores (nested model).

Finally, because of the three-day "burn-in" period to converge on reliable estimates of SAFTE scores, we will also explore whether the relationship between SAFTE scores and SI in Aim 1a changes as a function of time using time-varying effects models (TVEM) [93, 114, 115]. In other words, it may take several days for the SAFTE algorithm to converge on initial estimates and this approach allows us to determine if their relationship strengthens over time. TVEM is a nonparametric regression approach used to estimate time-varying regressions (i.e. regression coefficients are not fixed across time but estimated using splines) without assuming a fixed functional form (i.e. models use splines to determine change trajectory) and can be used to explore the possibilities that relationships among variables fluctuate over time. Consistent with our past TVEM work [93], models will be tested for both between- and within-subjects centering of the data to evaluate the relative strength of each approach.

Our primary outcome for Aim 2 is momentary SAFTE scores and the goal is to characterize dynamic relationships between SAFTE scores and state and trait-risk factors consistent with our hypothetical model (see Figure 2). To evaluate this aim, we will utilize dynamic structural modeling (DSEM) [110, 116, 117], a multilevel extension of structural equation modeling (SEM) and utilizes a vector autoregressive model to account for the underlying time series within the repeated measures [110, 116, 117]. DSEM is implemented using Bayesian estimation and treats missing data within specified intervals as randomly missing across blocks of data that are handled using a Kalman filter (robust to ~80% missingness) [110]. This provides a robust approach for evaluating characteristics of person-level metrics (represented as random effects; Level 2) that represent different aspects of timebased relationships [110, 118]: (1) intensity (i.e. random mean = person-centered mean level SAFTE score; higher values represent differences relative to each person's average level) and (2) variability (i.e. random variance = person-specific variation surrounding mean level SAFTE score); (3) inertia (i.e. random autoregression = the person-specific autocorrelation of SAFTE over time; higher values indicate that individuals are resistant to perturbations). DSEM is also able to integrate a within-person (Level 1) crosslag model in which associations between bivariate processes are tested to evaluate lagged and contemporaneous relations on a momentary basis. In Aim 2a, we focus on the estimation of the person-level (Level 2 random effects) intensity/variability/inertia of SAFTE scores over the course of the EMA. Because the SAFTE metric is continuously generated throughout the day/night, we will reduce the data down to 1-hour epochs during participants' waking hours and derive ~12-18 repeated assessments per person each day. In DSEM, person-level metrics of average/variability/inertia of waking-hours SAFTE scores will be regressed on trait-risk factors assessed at baseline in the Level 2 model of the DSEM (i.e. inhibitory processing, impulsivity, emotional reactivity). Prior to analysis, we will de-trend the data to ensure stationarity and we will account for the potential cyclic nature of SAFTE throughout the day by including relevant contrast-coded covariates indicating those cycles as necessary (e.g. morning vs evening hours). Trait-level risk factors will be entered as person-level predictors of the random effects of the mean, variability, and inertia of SAFTE scores over time. In Aim 2b, we will use DSEM to estimate a first-order cross-lagged vector autoregressive model to determine the lagged and contemporaneous associations between SAFE scores and day-level state risk factors (i.e. affect, cognitive performance, social isolation). In this approach, SAFTE scores will be aggregated at the day level in order to facilitate modeling of the within-person (Level 1) cross-lagged effects of state risk factors (which are assessed once per day) on SAFTE scores over the course of 28 days.

Our primary outcome for Exploratory Aim 3 is suicide risk and the goal of this aim is to build an integrated model of proximal suicide risk. For this exploratory aim, consistent with our conceptual model (see Figure 2), we will integrate findings from Aims 1 and 2 to identify significant predictors of risk for suicide at follow-up. We will use SEM to assess the relationship between our hypothesized constructs (i.e. trait and state risk factors, diminished sleep, cognitive effect) and suicide risk at 3 and 6 months in separate models. SEM facilitates the modeling of complex relations among both latent and observed variables as well as the explicit addition of covariances to account for relationships among predictors (i.e. to address potential multicollinearity). While we expect 20%-40% of our sample to report SA at the 6-month follow-up (see Sample Size Calculation above), our primary outcome for this aim will be a composite score of suicide risk computed using data from each study follow-up (3 and 6 months). Therefore, we expect to capture higher rates of risk than those observed for SA alone (see Primary Outcomes for more detail). Separate suicide risk composites will be calculated for 3-month and 6-month follow-ups to be evaluated

Because of the large numbers of potential predictor variables across our hypothesized constructs (i.e. Figure 2), we will use data reduction techniques (i.e. factor analysis) to create composites of variables that are highly correlated (such as sleep variables to provide an overall index of atypical sleep) to model associations between these key constructs and suicide risk (see Analytic Overview for more detail). As this is an exploratory aim, with the goal of integration and hypothesis generations, variable selection will be guided by major, mechanistic findings from Aims 1 and 2 and models will control for life experiences (i.e. gender, trauma history, past suicide attempts). One of the benefits of SEM is that several competing models can be compared through model fit indices to determine the most parsimonious model that fits the data well. We will compare nested models using chi-squared difference tests and will use information criteria to compare across different models. The best-fitting model from this aim will directly inform the theoretical basis of our future work, in which we hope to build, test, and validate a predictive model of proximal risk that is translatable to clinical and real-world scenarios.

Ethics

All study procedures were approved by the Institutional Review Board at Butler Hospital. All sensitive suicide and interview assessments will be supervised by licensed clinical psychologists trained in the assessment battery and with a human subjects certification, who will also be on-call in the event of participant crises. Participant frustration or distress during laboratory procedures will be closely monitored by trained research staff, and participants will be allowed to discontinue participation at any time, or to complete the laboratory protocol at another time when they feel less distress. To reduce any distress associated with assessments, we have integrated a relaxation period following the completion of laboratory assessments.

Given the foci of our study, it is probable that some participants may disclose SI or other symptoms necessitating immediate psychiatric hospitalization. Participant affect and suicidal and homicidal ideation will be assessed at each patient contact using the Assessment Session Check-In (a modified version of the UWRAP [119]). We have developed an emergency protocol designed to manage exacerbations of negative affect and urges to self-harm, providing research staff with detailed action plans to manage these situations. Should participants report SI with imminent risk of self-harm during our inpatient procedures, we will coordinate our observations with patients' inpatient treatment team and chart our findings. Outpatient assessments will be conducted at Butler Hospital, with a licensed clinical psychologist available for consultation at all times. Any serious psychiatric symptoms identified at follow-up may be quickly and efficiently managed through consultation with Butler Hospital's Psychiatric Assessment Services, where trained professionals can determine if participants require immediate hospitalization. As some follow-up assessments are conducted by phone, research staff will request information about the participant's location; therefore, if participants require immediate hospitalization, we can provide that information to emergency services.

Participants will be informed that study staff will not be monitoring EMA responses. However, if they endorse items via EMA indicative of current high risk, they will be provided a "we are concerned about you" message, containing contact information for crisis services. They will also have a list of emergency numbers available to them on-demand via the EMA platform that they can access should they experience a clinical crisis.

Summary and implications

Integrated models of proximal risk for SI/SB are critically needed to better understand suicide risk and ultimately prevent death by suicide. In this study, we will characterize temporal relationships between atypical sleep, suicide risk factors, and SI/SB episodes to inform the development of an integrated model of proximal suicide risk. The results of this study will significantly enhance our understanding of atypical sleep-associated suicide phenomenology as it exists in the real world as well as to greatly improve our ability to prevent and treat suicidality using traditional and novel, technology-enhanced, interventions.

Acknowledgments

The authors would like to thank the research staff (including Rachel Frietchen, Laurel Quinlan, Daniel Alboukrek, Geneva Mason, Amalia Lynch, Jungwoon Park, and Stephen Coutu) who are helping with data collection for this study.

Disclosure Statement

Financial disclosure: M.F.A is a compensated member of Ilumivu's scientific advisory board and could potentially benefit from the results of this research. N.N. is an unpaid member of Ilumivu's scientific advisory board, with future options that could involve the potential to benefit from the results of this research. Non-financial disclosure: All authors declare that there are no conflicts of interest.

Funding

Research reported in this publication was supported by the National Institute of Mental Health of the National Institutes of Health under Award Number R01MH124832. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions

Melanie Bozzay (Conceptualization [lead], Funding acquisition [equal], Methodology [equal], Project administration [equal], Writing—original draft [lead], Writing—review & editing [equal]), Michael Armey (Conceptualization [lead], Funding acquisition [equal], Methodology [equal], Writing—original draft [supporting], Writing—review & editing [equal]), Jeff Huang (Funding acquisition [equal], Methodology [equal], Writing—original draft [supporting], Writing—review & editing [equal]), Andrea Goldschmidt (Funding acquisition [equal], Methodology [equal], Writingreview & editing [equal]), Heather Schatten (Funding acquisition [equal], Methodology [equal], Writing—review & editing [equal]), Leslie Brick (Conceptualization [equal], Formal analysis [equal], Funding acquisition [supporting], Methodology [equal], Writing original draft [supporting], Writing—review & editing [equal]), Jennifer Primack (Funding acquisition [equal], Writing—review & editing [equal]), Nicole Nugent (Funding acquisition [equal], Methodology [equal], Writing—review & editing [equal]), and Jared Saletin (Conceptualization [equal], Funding acquisition [equal], Investigation [equal], Methodology [equal], Resources [equal], Writing—original draft [equal], Writing—review & editing [equal])

Data availability

The principal investigators will deposit study data in the National Mental Health Data Archive (NDAR) at NIMH Data Archive - Data - Collection (https://nda.nih.gov/edit_collection.html?id=3760) for data sharing.

References

- 1. World Health Organization. Suicide worldwide in 2019: global health estimates. 2021.
- 2. Goldacre M, Seagroatt V, Hawton K. Suicide after discharge from psychiatric inpatient care. Lancet. 1993;342(8866):283-286. doi:10.1016/0140-6736(93)91822-4
- Geddes JR, Juszczak E. Period trends in rate of suicide in first 28 days after discharge from psychiatric hospital in Scotland, 1968-92. BMJ. 1995;311(7001):357-360. doi:10.1136/ bmj.311.7001.357
- Ho T-P. The suicide risk of discharged psychiatric patients. J Clin Psychiatry. 2003;64:702-707. doi:10.4088/jcp.v64n0613
- Bryan R. Brief cognitive-behavioral therapy for suicide prevention. New York: Guilford Publications; 2018.
- Linehan MM, Comtois KA, Murray AM, et al. Two-year randomized controlled trial and follow-up of dialectical behavior therapy vs therapy by experts for suicidal behaviors and borderline

- personality disorder. Arch Gen Psychiatry. 2006;63(7):757-766. doi:10.1001/archpsyc.63.7.757
- 7. Schafer KM, Kennedy G, Gallyer A, Resnik P. A direct comparison of theory-driven and machine learning prediction of suicide: a meta-analysis. PLoS One. 2021;16(4):e0249833. doi:10.1371/journal.pone.0249833
- Franklin JC, Fox KR, Ribeiro JD, et al. Risk factors for suicidal thoughts and behaviors: A metaanalysis of 50 years of research. Presented at: Annual meeting of the IASR/AFSP International Summit on Suicide Research; 2015; New York. Session Advancing the prediction and prevention of suicidal thoughts and behaviors.
- 9. Buysse DJ. Sleep health: can we define it? Does it matter? Sleep. 2014;**37**(1):9-17. doi:10.5665/sleep.3298
- 10. Rudd MD, Berman AL, Joiner TE Jr, et al. Warning signs for suicide: theory, research, and clinical applications. Suicide Life Threat Behav. 2006;**36**(3):255–262. doi:10.1521/suli.2006.36.3.255
- 11. Trockel M, Karlin BE, Taylor CB, Brown GK, Manber R. Effects of cognitive behavioral therapy for insomnia on suicidal ideation in veterans. Sleep. 2015;38(2):259-265. doi:10.5665/sleep.4410
- 12. Littlewood DL, Kyle SD, Carter L-A, Peters S, Pratt D, Gooding P. Short sleep duration and poor sleep quality predict next-day suicidal ideation: an ecological momentary assessment study. Psychol Med. 2019;49(3):403-411. doi:10.1017/S0033291718001009
- 13. Hochard KD, Heym N, Townsend E. The unidirectional relationship of nightmares on self-harmful thoughts and behaviors. Dreaming. 2015;25(1):44-58. doi:10.1037/a0038617
- 14. Zuromski KL, Cero I, Witte TK. Insomnia symptoms drive changes in suicide ideation: a latent difference score model of community adults over a brief interval. J Abnorm Psychol. 2017;126(6):739-749. doi:10.1037/abn0000282
- 15. Britton PC, Ilgen MA, Rudd MD, Conner KR. Warning signs for suicide within a week of healthcare contact in veteran decedents. Psychiatry Res. 2012;200(2-3):395-399. doi:10.1016/j. psychres.2012.06.036
- 16. Bishop TM, Walsh PG, Ashrafioun L, Lavigne JE, Pigeon WR. Sleep, suicide behaviors, and the protective role of sleep medicine. Sleep Med. 2020;66:264-270. doi:10.1016/j.sleep.2019.07.016
- 17. Pigeon WR, Bishop TM, Titus CE. The relationship between sleep disturbance, suicidal ideation, suicide attempts, and suicide among adults: a systematic review. Psychiatr Ann. 2016;**46**(3):177–186. doi:10.3928/00485713-20160128-01
- 18. Pigeon WR, Pinquart M, Conner K. Meta-analysis of sleep disturbance and suicidal thoughts and behaviors. J Clin Psychiatry. 2012;73(9):e1160-e1167. doi:10.4088/JCP.11r07586
- 19. Rumble ME, Dickson D, McCall WV, et al. The relationship of person-specific eveningness chronotype, greater seasonality, and less rhythmicity to suicidal behavior: a literature review. J Affect Disord. 2018;**227**:721–730. doi:10.1016/j.jad.2017.11.078
- 20. Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry. 2020;10(1):1-13.
- 21. Hursh SR, Redmond DP, Johnson ML, et al. Fatigue models for applied research in warfighting. Aviat Space Environ Med. 2004;75(3):A44-53; discussion A54.
- 22. Franklin JC, Ribeiro JD, Fox KR, et al. Risk factors for suicidal thoughts and behaviors: a meta-analysis of 50 years of research. Psychol Bull. 2017;143(2):187-232. doi:10.1037/bul0000084
- 23. Van Dongen H, Maislin G, Mullington JM, Dinges DFJS. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep. 2003;26(2):117-126.

- 24. Krause AJ, Simon EB, Mander BA, et al. The sleep-deprived human brain. Nat Rev Neurosci. 2017;18(7):404-418. doi:10.1038/ nm.2017.55
- 25. Harvey AG, Murray G, Chandler RA, Soehner A. Sleep disturbance as transdiagnostic: consideration of neurobiological mechanisms. Clin Psychol Rev. 2011;31(2):225-235. doi:10.1016/j. cpr 2010 04 003
- 26. Borbély AA, Daan S, Wirz-Justice A, Deboer T. The two-process model of sleep regulation: a reappraisal. J Sleep Res. 2016;25(2):131-143. doi:10.1111/jsr.12371
- 27. Bozzay ML, Karver MS, Verona E. Linking insomnia and suicide ideation in college females: the role of socio-cognitive variables and depressive symptoms in suicide risk. J Affect Disord. 2016;**199**:106–113. doi:10.1016/j.jad.2016.04.012
- 28. Verona E, Bozzay ML. Biobehavioral approaches to aggression implicate perceived threat and insufficient sleep: clinical relevance and policy implications. Policy Insights Behau Brain Sci. 2017;**4**(2):178–185. doi:10.1177/2372732217719910
- 29. Van der Linden D, Frese M, Meijman TF. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychol (Amst). 2003;113(1):45-65. doi:10.1016/ s0001-6918(02)00150-6
- 30. Bozzay ML, Verona E. Linking sleep and aggression: examining the role of response inhibition and emotional processing. Clin Psychol Sci. J Assoc Psychol Sci. 2023;11(2):271-289. doi:10.1177/21677026221100235
- 31. Galynker I, Yaseen ZS, Cohen A, Benhamou O, Hawes M, Briggs J. Prediction of suicidal behavior in high risk psychiatric patients using an assessment of acute suicidal state: the suicide crisis inventory. Depress Anxiety. 2017;34(2):147-158. doi:10.1002/ da.22559
- 32. Yaseen ZS, Kopeykina I, Gutkovich Z, Bassirnia A, Cohen LJ, Galynker II. Predictive validity of the Suicide Trigger Scale (STS-3) for post-discharge suicide attempt in high-risk psychiatric inpatients. PLoS One. 2014;9(1):e86768-e86768. doi:10.1371/journal.pone.0086768
- 33. Armey MF. Ecological momentary assessment and intervention in non-suicidal self-injury: a novel approach to treatment. J Cogn Psychother 2012;26:299-317. doi:10.1891/0889-8391.26.4.299
- 34. Armey MF, Crowther JH, Miller IW. Changes in ecological momentary assessment reported affect associated with episodes of non-suicidal self-injury. Behav Ther. 2011;42:579-588. doi:10.1016/j.beth.2011.01.002
- 35. Armey MF, Nugent NR, Crowther JH. An exploratory analysis of situational affect, early life stress, and non-suicidal self-injury in college students. J Child Adolescent Trauma 2012;5:327-343. doi :10.1080/19361521.2012.719594
- 36. Armey MF, Schatten HT, Haradhvala N, Miller IW. Ecological momentary assessment (EMA) of depression-related phenomena. Curr Opin Psychol. 2015;**4**:21–25. doi:10.1016/j. copsyc.2015.01.002
- 37. Chapman AL, Dixon-Gordon KL. Emotional antecedents and consequences of deliberate self-harm and suicide attempts. Suicide Life Threat Behav. 2007;37(5):543-552. doi:10.1521/ suli.2007.37.5.543
- 38. Hendin H, Maltsberger JT, Lipschitz A, Haas AP, Kyle J. Recognizing and responding to a suicide crisis. Ann N Y Acad Sci. 2001;932(1):169-86; discussion 186. doi:10.1111/j.1749-6632.2001.tb05805.x
- 39. Chu C, Nota JA, Silverman AL, Beard C, Björgvinsson T. Pathways among sleep onset latency, relationship functioning, and negative affect differentiate patients with suicide attempt

- history from patients with suicidal ideation. Psychiatry Res. 2019;**273**:788-797. doi:10.1016/j.psychres.2018.11.014
- 40. McMakin DL, Dahl RE, Buysse DJ, et al. The impact of experimental sleep restriction on affective functioning in social and nonsocial contexts among adolescents. J Child Psychol Psychiatry. 2016;57(9):1027-1037. doi:10.1111/jcpp.12568
- 41. Kumler FR. Communication between attempters and significant others: an exploratory study. Nurs Res. 1964;13(3):268???270-268???270. doi:10.1097/00006199-196401330-00024
- 42. Robins E, Gassner S, Kayes J, Wilkinson RH, Murphy GE. The communication of suicidal intent: a study of 134 consecutive cases of successful (completed) suicide. Am J Psychiatry. 1959;**115**(8):724–733. doi:10.1176/ajp.115.8.724
- 43. Wolk-Wasserman D. Suicidal communication of persons attempting suicide and responses of significant others. Acta PsychiatrScand. 1986;73(5):481-499. doi:10.1111/j.1600-0447.1986. tb02715.x
- 44. Grocott LR, Mair A, Galione JN, Armey MF, Huang J, Nugent NR. Days with and without self-injurious thoughts and behaviors: impact of childhood maltreatment on adolescent online social networking. J Adolesc. 2022;94(5):748-762. doi:10.1002/ jad.12060
- 45. Allen KJ, Bozzay ML, Edenbaum ER. Neurocognition and suicide risk in adults. Curr Behav Neurosci Rep. 2019;6:151-165. doi:10.1007/s40473-019-00189-y
- 46. Yoo S-S, Gujar N, Hu P, Jolesz FA, Walker MP. The human emotional brain without sleep-a prefrontal amygdala disconnect. Curr Biol. 2007;17(20):R877-R878. doi:10.1016/j. cub.2007.08.007
- 47. Kudinova AY, Owens M, Burkhouse KL, Barretto KM, Bonanno GA, Gibb BE. Differences in emotion modulation using cognitive reappraisal in individuals with and without suicidal ideation: an ERP study. Cogn Emot. 2016;30(5):999-1007. doi:10 .1080/02699931.2015.1036841
- 48. Altena E, Micoulaud-Franchi J-A, Geoffroy P-A, Sanz-Arigita E, Bioulac S, Philip P. The bidirectional relation between emotional reactivity and sleep: from disruption to recovery. Behav Neurosci. 2016;130(3):336-350. doi:10.1037/bne0000128
- 49. Posner K, Oquendo MA, Gould M, Stanley B, Davies M. Columbia Classification Algorithm of Suicide Assessment (C-CASA): classification of suicidal events in the FDA's pediatric suicidal risk analysis of antidepressants. Am J Psychiatry. 2007;**164**(7):1035–1043. doi:10.1176/ajp.2007.164.7.1035
- 50. First MB, Karg RS, Spitzer RL. Structured Clinical Interview For DSM-5—Research Version (SCID-5 for DSM-5, Research Version; SCID-5-RV). Arlington, VA: American Psychiatric Association; 2015.
- 51. Linehan M, Heard H. Treatment History Interview-4 (THI-4). Seattle, WA: University of Washington; 1996.
- 52. Miller IW, Norman WH, Bishop SB, Dow MG. The Modified Scale For Suicidal Ideation: reliability and validity. J Consult Clin Psychol. 1986; 54(5):724-725. doi:10.1037//0022-006x.54.5.724
- 53. Bernstein DP, Fink L, Handelsman L, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry. 1994;151(8):1132-1136. doi:10.1176/ ajp.151.8.1132
- 54. Beck Hopelessness Scale. The Psychological Corporation; 1988.
- 55. Zanarini MC, Vujanovic AA, Parachini EA, Boulanger JL, Frankenburg FR, Hennen J. A screening measure for BPD: the Mclean Screening Instrument for Borderline Personality Disorder (MSI-BPD). J Personal Disord. 2003;17(6):568-573. doi:10.1521/pedi.17.6.568.25355

- 56. Higgins-Biddle JC, Saunders JB, Monteiro MG. AUDIT: The Alcohol Use Disorders Identification Test. Guidelines for use in primary health care. World Health Organization; 2001.
- 57. Berman AH, Palmstierna T, Schlyter F. Evaluation of the Drug Use Disorders Identification Test (DUDIT) in criminal justice and detoxification settings and in a Swedish population sample. Eur Addict Res. 2005:11:22-31.
- 58. Beck AT, Steer RA, Brown G. Manual for the Beck Depression Inventory-II. Hoboken, NJ: The Corsini Encyclopedia Psychology; 1996.
- 59. Van Orden KA, Cukrowicz KC, Witte TK, Joiner TE Jr. Thwarted belongingness and perceived burdensomeness: construct validity and psychometric properties of the Interpersonal Needs Questionnaire. Psychol Assess. 2012;24(1):197-215. doi:10.1037/ a0025358
- 60. Van Orden KA, Witte TK, Gordon KH, Bender TW, Joiner TE Jr. Suicidal desire and the capability for suicide: tests of the interpersonal-psychological theory of suicidal behavior among adults. J Consult Clin Psychol. 2008;76(1):72-83. doi:10.1037/0022-006X.76.1.72
- 61. Carver CS, White TL. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. J Pers Soc Psychol. 1994;67(2):319-333. doi:10.1037//0022-3514.67.2.319
- 62. Whiteside SP, Miller JD, Reynolds SK. Validation of the UPPS impulsive behaviour scale: a four-factor model of impulsivity. Eur J Personal. 2005;19:559-574.
- 63. Gratz K, Roemer L. Multidimensional assessment of emotion regulation and dysregulation: development, factor structure, and initial validation of the difficulties in Emotion Regulation Scale. J Psychopathol Behav Assessment 2004;**26**(1):41–54. doi:10.1023/B:JOBA.0000007455.08539.94
- Hamilton CM, Strader LC, Pratt JG, et al. The PhenX Toolkit: get the most from your measures. Am J Epidemiol. 2011;174(3):253-260. doi:10.1093/aje/kwr193
- 65. Krakow B, Schrader R, Tandberg D, et al. Nightmare frequency in sexual assault survivors with PTSD. J Anxiety Disord. 2002;16(2):175-190. doi:10.1016/s0887-6185(02)00093-2
- 66. Bastien CH, Vallières A, Morin CM. Validation of the Insomnia Severity Index as an outcome measure for insomnia research. Sleep Med. 2001;2(4):297-307. doi:10.1016/ s1389-9457(00)00065-4
- 67. Carpenter JS, Andrykowski MA. Psychometric evaluation of the Pittsburgh Sleep Quality Index. J Psychosom Res. 1998;45(1):5–13. doi:10.1016/s0022-3999(97)00298-5
- 68. Horne JA, Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97-110.
- 69. Zavada A, Gordijn MC, Beersma DG, Daan S, Roenneberg T. Comparison of the Munich Chronotype Questionnaire with the Horne-Östberg's morningness-eveningness score. Chronobiol Int. 2005;22(2):267-278. doi:10.1081/cbi-200053536
- 70. Nock MK, Holmberg EB, Photos VI, Michel BD. The Self-Injurious Thoughts and Behaviors Interview: development, reliability, and validity in an adolescent sample. Psychol Assess. 2007;73:872-879.
- 71. Bechara A, Damasio AR, Damasio H, Anderson SW. Insensitivity to future consequences following damage to human prefrontal cortex. Cognition. 1994;50(1):7-15. doi:10.1016/0010-0277(94)90018-3
- 72. Buelow MT, Suhr JA. Construct validity of the Iowa Gambling Task. Neuropsychol Rev. 2009;19(1):102-114. doi:10.1007/ s11065-009-9083-4

- 73. Singh V, Khan A. Decision making in the reward and punishment variants of the Iowa Gambling Task: evidence of "Foresight" or "Framing?". Front Neurosci. 2012;6:1-7.
- 74. Bechara A. Iowa Gambling Task Professional Manual. Lutz, FL: Psychological Assessment Resources. Inc; 2007.
- 75. Jollant F, Bellivier F, Leboyer M, et al. Impaired decision making in suicide attempters. Am J Psychiatry. 2005;162:304-310. doi:10.1176/appi.ajp.162.2.304
- 76. Bechara A, Martin EM. Impaired decision making related to working memory deficits in individuals with substance addictions. Neuropsychology. 2004:18(1):152-162. doi:10.1037/0894-4105.18.1.152
- 77. Grant S, Contoreggi C, London ED. Drug abusers show impaired performance in a laboratory test of decision making. Neuropsychologia. 2000;38(8):1180-1187. doi:10.1016/ s0028-3932(99)00158-x
- 78. Sprague J, Verona E. Emotional conditions disrupt behavioral control among individuals with dysregulated personality traits. J Abnorm Psychol. 2010;119(2):409-419. doi:10.1037/a0019194
- 79. Bradley MM, Lang PJ. Affective norms for English words (ANEW): Instruction manual and affective ratings. Psychology Technical; 1999.
- 80. Verona E, Bresin K. Aggression proneness: transdiagnostic processes involving negative valence and cognitive systems. Int J Psychophysiol. 2015;98(2):321-329. doi:10.1016/j. ijpsycho.2015.03.008
- 81. Moser JS, Hajcak G, Bukay E, Simons RF. Intentional modulation of emotional responding to unpleasant pictures: an ERP study. Psychophysiology. 2006;43(3):292-296. doi:10.1111/j.1469-8986.2006.00402.x
- 82. Lang PJ, Bradley MM, Cuthbert BN. International Affective Picture System (IAPS): instruction manual and affective ratings. Gainesville: The Center for Research in Psychophysiology, University of Florida. 1999.
- 83. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi:10.1016/j. jneumeth.2003.10.009
- 84. Lopez-Calderon J, Luck SJ. ERPLAB: an open-source toolbox for the analysis of event-related potentials. Front Hum Neurosci. 2014;8:213. doi:10.3389/fnhum.2014.00213
- 85. Luck SJ. An Introduction to the Event-Related Potential Technique. Cambridge, MA: MIT Press; 2014.
- 86. Duncan-Johnson CC, Donchin E. The P300 component of the event-related brain potential as an index of information processing. Biol Psychol. 1982;14(1-2):1-52. doi:10.1016/0301-0511(82)90016-3
- 87. MacNamara A, Ferri J, Hajcak G. Working memory load reduces the late positive potential and this effect is attenuated with increasing anxiety. Cogn Affect Behav Neurosci. 2011;11(3):321-331. doi:10.3758/s13415-011-0036-z
- 88. Weinberg A, Hajcak G. The late positive potential predicts subsequent interference with target processing. J Cogn Neurosci. 2011;**23**(10):2994–3007. doi:10.1162/jocn.2011. 21630
- 89. Russell C, Caldwell J, Arand D, Myers L, Wubbels P, Downs H. Validation of the fatigue science readiband actigraph and associated sleep/wake classification algorithms. Arch LLC. 2000.
- 90. Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: a research community-driven open source R package for generating physical activity and sleep outcomes from multi-day

- raw accelerometer data. J Meas Phys Behav. 2019;2(3):188-196. doi:10.1123/jmpb.2018-0063
- 91. Van Someren EJ, Swaab DF, Colenda CC, Cohen W, McCall WV, Rosenquist PB. Bright light therapy: improved sensitivity to its effects on rest-activity rhythms in Alzheimer patients by application of nonparametric methods. Chronobiol Int. 1999;16(4):505-518. doi:10.3109/07420529908998724
- 92. Choynowski J, Devine J, Hursh S. SAFTEr: an R Package for the SAFTE model. Sleep. 02872024;47(Suppl_1). doi:10.1093/sleep/ zsae067.0287
- 93. Armey MF, Brick L, Schatten HT, Nugent NR, Miller IW. Ecologically assessed affect and suicidal ideation following psychiatric inpatient hospitalization. Gen Hosp Psychiatry. 2018;63:89-96. doi:10.1016/j.genhosppsych.2018.09.008
- 94. Armey MF, Nugent NR, Crowther JH. An exploratory analysis of situational affect, early life stress, and nonsuicidal self-injury in college students. J Child Adolesc Trauma. 2012;5(4):327-343. doi:10 .1080/19361521.2012.719594
- 95. Armey MF. Ecological momentary assessment and intervention in nonsuicidal self-injury: a novel approach to treatment. J Cogn Psychother. 2012;26(4):299-317. doi:10.1891/0889-8391.26.4.299
- 96. Watson D, Clark L. The PANAS-X: manual for the positive and negative affect schedule - expanded form. Unpublished manu-
- 97. Nolen-Hoeksema S, Morrow J. A prospective study of depression and posttraumatic stress symptoms after a natural disaster: the 1989 Loma Prieta earthquake. J Pers Soc Psychol. 1991;61(1):115-121. doi:10.1037//0022-3514.61.1.115
- 98. Posner K, Brent D, Lucas C, et al. Columbia-Suicide Severity Rating Scale (C-SSRS). New York: Columbia University Medical Center;
- 99. Waters AJ, Li Y. Evaluating the utility of administering a reaction time task in an ecological momentary assessment study. Psychopharmacology (Berl). 2008;197(1):25-35. doi:10.1007/ s00213-007-1006-6
- 100. Massachi T, Fong G, Mathur V, et al. Sochiatrist: SIGNALS of affect in messaging data. Proc ACM Hum Comput Interact. 2020;4(CSCW2):1-25. doi:10.1145/3415182
- 101. pendse s, fong g, fu j, et al. Sochiatrist: inferring the relationship between emotion and messaging data. Presented at: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; 2019; ACM.
- 102. Gilbert CHE. Vader: a parsimonious rule-based model for sentiment analysis of social media text. 2014:
- 103. Boudreaux ED, Miller I, Goldstein AB, et al. The emergency department safety assessment and follow-up evaluation (ED-SAFE): method and design considerations. Contemp Clin Trials. 2013;**36**(1):14–24. doi:10.1016/j.cct.2013.05.008
- 104. Mplus Version 3.11. Muthen & Muthen; 2004.
- 105. Benjamini Y, Hochberg Y. Controlling the false discovery rate-a new and powerful approach to multiple testing. J R Stat Soc B.
- 106. Benjamini Y, Yekuteli D. The control of the false discovery rate in multiple testing under dependency. Ann Statist. 2001;29:1165-1188.
- 107. Roenneberg T, Kuehnle T, Pramstaller PP, et al. A marker for the end of adolescence. Curr Biol. 2004;14(24):R1038-R1039. doi:10.1016/j.cub.2004.11.039
- 108. Astivia OLO, Gadermann A, Guhn M. The relationship between statistical power and predictor distribution in multilevel logistic regression: a simulation-based approach. BMC Med Res Methodol. 2019;19(1):97.

- 109. Schultzberg M, Muthen B. Number of subjects and time points needed for multilevel time series analysis: a simulation study of dynamic structural equation modeling. Struct Equ Modeling. 2017;25(4):495-515.
- 110. Asparouhov T, Hamaker EL, Muthén B. Dynamic structural equation models. Struct Equ Model Multidis J. 2018;25(3):359-388. doi:10.1080/10705511.2017.1406803
- 111. Cha CB, Najmi S, Park JM, Finn CT, Nock MK. Attentional bias toward suicide-related stimuli predicts suicidal behavior. J Abnorm Psychol. 2010;**119**(3):616–622. doi:10.1037/a0019710
- 112. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-191. doi:10.3758/bf03193146
- 113. Curran PJ, Bauer DJ. The disaggregation of within-person and between-person effects in longitudinal models of change. Annu Rev Psychol. 2011;62:583-619. doi:10.1146/annurev. psych.093008.100356
- 114. Shiyko MP, Lanza ST, Tan X, Li R, Shiffman S. Using the time-varying effect model (TVEM) to examine dynamic associations between negative affect and self confidence on smoking urges: differences between successful quitters and

- relapsers. Prev Sci. 2012;13(3):288-299. doi:10.1007/s11121-011-0264-7
- 115. Tan X, Shiyko MP, Li R, Li Y, Dierker L. A time-varying effect model for intensive longitudinal data. Psychol Methods. 2012;17(1):61-77. doi:10.1037/a0025814
- 116. Hamaker EL, Asparouhov T, Brose A, Schmiedek F, Muthén B. At the frontiers of modeling intensive longitudinal data: dynamic structural equation models for the affective measurements from the COGITO study. Multivar Behav Res. 2018;53(6):820-841. doi:10.1080/00273171.2018.1446819
- 117. McNeish D, Hamacker, EL. A primer on two-level dynamic structural equation models for intensive longitudinal data. Psychol. Methods. 2020;25(5):610-635.
- 118. Dejonckheere E, Mestdagh M, Houben M, et al. Complex affect dynamics add limited information to the prediction of psychological well-being. Nat Hum Behav. 2019;3(5):478-491. doi:10.1038/s41562-019-0555-0
- 119. Reynolds SK, Lindenboim N, Comtois KA, Murray A, Linehan MM. Risky assessments: participant suicidality and distress associated with research assessments in a treatment study of suicidal behavior. Suicide Life Threat Behav. 2006;36(1):19-34. doi:10.1521/suli.2006.36.1.19