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ABSTRACT

We introduce a tool within the Code Bubbles development
environment that allows for continuous execution as the
programmer edits. The tool, SEEDE, shows both the intermediate
and final results of execution in terms of variables, control and
data flow, output, and graphics. These results are updated as the
user edits. The tool can be used to help the user write new code
or to find and fix bugs. The tool is explicitly designed to let the
user quickly explore the execution of a method along with all the
code it invokes, possibly while writing or modifying the code.
The user can start continuous execution either at a breakpoint or
for a test case. This paper describes the tool, its implementation,
and its user interface. It presents an initial user study of the tool
demonstrating its potential utility.
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1 INTRODUCTION

The ability to see intermediate results and understand and check
the code as it is written is central to spreadsheet programming
and is used in interactive environments such as MATLAB and in
dynamic languages such as Smalltalk and Python. For example,
Sharp [62] notes that for Smalltalk, “A useful technique for writ-
ing new code is to write most of the code in the Debugger”. Bret
Victor claims this type of live coding is the preferred way to code
[71]. This notion of live programming is slowly spreading to other
domains such as data visualization [15,28], and other, generally
functional, languages. Programmers can do live coding but only
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to a very limited extent with today’s traditional Java program-
ming environments using hot swapping, the ability to reload a
class and continue execution.

Our goal is to provide live programming for real, complex,
and long-running systems in a practical fashion. We targeted
Java programs as an example, but the techniques could be applied
to other languages.

Our prototype tool, SEEDE, provides the ability to see imme-
diately the effect of code changes on execution. It works for com-
plex Java systems and a wide range of different edits. It
essentially provides live programming for real programs. It lets
the programmer explore the execution both to find problems and
to investigate the effect of changes. It does this within the open-
source Code Bubbles programming environment [6], letting the
programmer start a new session at a breakpoint or for a test case
and showing the updated execution as the programmer edits.

Our work offers several contributions including:

« The requirements and insights needed to make live program-
ming possible and practical for real programs.

« A methodology and architecture that implements these
insights and meets the requirements.

+ An efficient and powerful initial user interface for browsing
over the complete execution of a method.

« Techniques for displaying graphical output during execution
for both paint methods and components.

A user study showing that the tool is usable and effective.

The requirements and insights are discussed in Section 2.
Related work is given in Section 3. An example use of the system
is shown in Section 4. The implementation is outlined in
Section 5. The user interface provided by Code Bubbles is
described in Section 6. Limitations of the approach are discussed
in Section 7. An initial evaluation of the system is presented in
Section 8.

2 PRACTICAL LIVE PROGRAMMING

Live programming involves providing continuous execution
feedback as the user edits. Any system that does this needs to
meet certain requirements. These include:

« Performance. The evaluation needs to be fast enough to be run
potentially on each keystroke and to provide feedback on the
resultant execution within seconds. If feedback is slower, it can
either confuse the programmer or cause unnecessary delays.

«+ Non-obtrusive. Execution feedback should not interfere with or
require substantial work on the part of the programmer in
order to see the results. This is especially true if the results can
change on each keystroke.
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« Idempotent. Continuous execution should not actually change
any values in the running program or the external environ-
ment. Any such changes would make running the code multi-
ple times problematic. For example, a Java method that starts
with the code:

if (!done.add(input)) return;

can only be executed once since the next execution would just
return.

« Error Tolerant. The intermediate code created by the user will
contain both syntactic errors and semantic faults. Continuous
execution must be able to work in such an environment, pro-
viding output at least up to the first error. Moreover, once the
user has an error-free program, the displayed execution should
be comparable to the prior error-free version.

« Complete. The system needs to be able to handle a large frac-
tion of the underlying language. This means being able to han-
dle input-output, files, graphics, as well as all the routines that
involve native code. It also means handling a wide variety of
edits.

Working with large, potentially long-running programs that
interact with the real world complicates the notion of live pro-
gramming. Making live programming work in this environment
requires a number of insights.

The first insight is that, rather than attempting to do live pro-
gramming over the entire application, it is sufficient to consider
only the execution of a single method and all that it calls. Pro-
gramming or debugging a large application is not done all at
once. Instead, the programmer will concentrate on a particular
feature, a particular bug, or a particular test case. Moreover, if the
programmer needs to make significant changes to the overall sys-
tem, for example doing a major refactoring, live programming is
not going to be relevant since there will be few consistent inter-
mediate states between the original and revised system.

For code creation, we assume that the user wants to imple-
ment a particular method and needs to get that method working
in an appropriate context. This can include adding or modifying
other methods, classes, and fields in the system. In this case they
would stop either in that method or in one of its callers. For
debugging, we assume the programmer has narrowed the prob-
lem to the invocation of a single method and all it calls, for exam-
ple the test driver. Concentrating on a particular method and
what it calls addresses the requirements of performance and non-
obtrusiveness.

The second insight is that the execution should be triggered
from a breakpoint in a debugger run. The environment needed to
run a method (i.e. all the associated data structures and values)
can be large and complex. Associating a SEEDE run with a partic-
ular breakpoint in a debugger session lets SEEDE query the
debugger to access this environment. The environment would
typically be too difficult for the user to specify manually and
would take too long to recompute on each keystroke. Starting
from a breakpoint means that most of the execution is fixed,
enhancing performance. It also allows the use of regular execu-
tion to reach the particular situation, for example interacting
with other systems or through a user interface, so that these are
not continually re-executed.

The third insight is that the system needs to convey the com-
plete execution including all intermediate results, and make it easy
for the programmer to navigate within these results. This is pri-
marily for debugging where the programmer will need to follow
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the execution and understand where and when problems
occurred, but is also useful in writing new code. Providing the
complete execution simplifies navigation over time for debug-
ging, making the result non-obtrusive since the programmer will
not have to do that much work to get back to the state they last
looked at before an edit.

Java already has a form of live programming through the
ability to hot-swap code in most modern debuggers [43]. To use
this feature, the user edits the code and then saves it. Execution
then goes back to the start of the current routine and the user can
proceed normally. While this is helpful, it is often problematic in
practice as discussed below. One of our goals was to provide an
implementation framework that can provide the benefits of hot
swapping without the problems.

The first problem is that the hot-swapping operation often
fails. The code has to be error-free. The changed code cannot add
or remove any fields or methods or change any method or field
signatures. Any routine that has changed can not be executing in
another thread or recursively in the current thread. Changes to
static field values are not propagated. Such failures are common
when trying to use hot-swapping. Moreover, once hot-swapping
fails, it is difficult to continue. Our approach handles all these
changes, either automatically or with minor user intervention
(for example when a new field needs a non-default value for
existing objects).

The second problem is that the point where execution contin-
ues changes from the current stopping point to the start of the
method, or, in some cases, the start of some prior method. The
user has to step or continue the execution to the point of interest.
Our approach tracks the current position in the execution and
automatically restores it after an edit.

A third problem is that hot-swapping is not idempotent. If
execution of the function makes a change to the environment or
parameters during one execution, that change persists when the
execution restarts, making the re-execution different. We deal
with this by executing outside the actual environment.

A fourth problem is that hot-swapping execution affects the
outside environment. It re-executes external I/O each time, caus-
ing multiple occurrences of output and requiring the user to reen-
ter input each time. We address these through an I/O model for
the console and files. Hot-swapping also has problems with syn-
chronization. For example, doing a hot swap while holding a lock
does not release the lock. This is true both for Java synchroniza-
tion locks and for user-defined locks. With our approach, locks
are only maintained within the simulation, not in the original
program.

A fifth problem is that hot-swapping cannot be used easily to
work on problems involving graphics. Stopping in a paint routine
implies stopping the graphics thread. Changes to graphics are not
visible until the graphics thread resumes and control returns to
the system routines. Changes to a routine setting up a widget
cannot be seen until the overall window has been setup and the
graphics thread runs. Using a graphics model, our approach is
able to show the intermediate graphics results for both these
cases.

3 RELATED WORK

The idea of providing immediate execution feedback while cod-
ing was central to spreadsheet programming introduced by Visi-
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Calc [7]. The idea was picked up for more traditional
programming by VisiProg [25], and more recently in the EG
extension to Eclipse [16]. These are both illustrated on simple
programs and do not scale to real systems nor do they address the
much more complex problems posed by real systems with com-
plex data structures, external methods, and concurrency.

Victor in his talk on live coding demonstrated a sample
framework and challenged the audience to create a real one [71].
Since then, there have been numerous attempts at providing sim-
ilar functionality, including an experimental mode of the Python
Tutor [22], Choc [40], JSFiddle [27] and Schuster’s work [59] for
JavaScript, Eve [38], Lambu for Haskell [32], Unison [12], and
Liveweave [61] and Chickenfoot [66] for web applications,
among others. Most of these are designed for simple programs,
not large existing systems.

A more extreme version of live programming involves using
examples to create code directly. This can be seen in the various
programming-by-example systems that have been developed
over the years [17,56,68]. More recent examples combine exam-
ples with live programming [21,60]. The approach is also being
used effectively for database interactions using continuous que-
ries [1] and in interactive data exploration tools [15,28].

There have been several studies on how programmers debug
and on what tools and techniques might be helpful for debugging
[45,47,73]. These tend to show that the type of assistance pro-
vided by SEEDE can be helpful.

Since many of the examples cited for continuous execution
are effectively test cases, this work is also related to early efforts
to integrate testing with code writing as in Tinker [35], and more
recent efforts involving continuous testing [57]. The work is also
related to incremental execution [36,51] and continuous and
incremental program analysis [2,41,50,75].

A number of systems over the years have been capable of
showing a full execution and letting the user move backward or
forward in time within that execution. EXDAMS was perhaps the
earliest example [3]. Early graphical environments such as
PECAN let the user step either forward or backward [51]. The
algorithm animation system BALSA provided a time slider simi-
lar to the one we offer [8]. More recent debuggers that include
similar features include TotalView [20], Elm’s time-traveling
debugger [44], and the Trace-Oriented Debugger [48]. Ko's
Whyline provided similar capabilities in a question-answering
framework [31]. Recent interest in this area involves time-travel
or omniscient debugging [4,10,13,14,23,26,30,33,72].

Dynamic updating of data structures has been used for main-
taining long-running applications. This involves taking updates
and modifying the existing system to use the new code [42,67,70].
These require the programmer to identify safe points for update
and concentrate more on migrating object implementations from
one version to the other. While some of these technologies are
useful, most of them are too heavy-weight to be used continually
while the programmer is editing. Dynamic object updating has
also been at the center of schema updates for object-oriented
database systems [63]. Our approach uses appropriate techniques
from these system to simulate object migration where necessary.

The use of models for simulating the external environment is
called mocking and is used in some testing environments
[19,37,39,46,64,69]. Sandboxing of files is also used extensively for
security purposes [24,29,74].
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4 EXAMPLE USE

In this section we give an example of the use of SEEDE for debug-
ging. We note the tool can also be used for writing new code in
much the same way.

The Code Bubbles tutorial program [54] is a simulation of the
Romp toy [49] consisting of a pendulum with a magnet moving
chaotically over a surface with movable magnets. The tutorial
includes several tasks involving fixing the display output, notably
to change the color of the magnets and to center the +/- output
on the magnet correctly. This is difficult to do in the debugger
because changes to the graphics parameters are not immediately
visible and the exact changes are not obvious. To use SEEDE on
the example, we start by setting a breakpoint at the start of the
drawing routine for the board and then start a debugging run up
to that breakpoint. Then we right click to bring up the default
pop-up menu, and select “Start Continuous Execution”.

At this point SEEDE starts the continuous execution process.
After about 5 seconds (the initial run is slow because code and
debugger data needs to be loaded), the system populates the vari-
ous components of the continuous execution bubble with the
resultant values as shown in Fig. 1a.

The default view provided is a hierarchical view containing
variables and their values from the simulated execution, similar
to a debugger display. The scroll bar at the bottom of the display
lets the user scroll over time in the execution. Green areas in the
scroll bar represent code in the current method; gray areas repre-
sent code in called methods. As the user scrolls, the variable val-
ues change accordingly, and the displays at the top left corner are
updated to show call stack. A special variable, “LINE*, shows the
current line number at that point. This line is also highlighted in
any editor that is open and includes the method as seen in Fig. 1h.

For our example, since we are concerned with drawing the
magnets, we slide the time scroller to the gray area representing
one of the drawMagnet calls, and then right click to select that
context. This could also have been done using the call graph
(Fig. 1b) or stack (Fig. 1e) view. We next right click again to have
SEEDE bring up the corresponding source.

Since the top level routine is a paint routine, SEEDE includes
a graphics panel showing the paint result as computed by inter-
preter in Fig. 1c. We find the code that sets the color to green and
change the reference to red. Within half a second the graphics
output changes accordingly. Changing the offset for the ‘+* and ‘-
> tokens is more complex. We find the drawString calls and try
out different delta values. As before, immediately after we have
set a new value, we can see the result. We eventually find the
proper deltas for the ‘+’ token and then repeat the process for the
‘-> token. The final results can be seen in Fig. 1d.

5 IMPLEMENTATION

SEEDE runs as a separate process, talking to both an interface
within the Code Bubbles system (BICEX) and to Code Bubbles’
Eclipse-based back end through a messaging interface [53] as
seen in Fig. 2. It takes requests from Code Bubbles and sends exe-
cution updates back to it asynchronously as they become avail-
able. It uses the back end to query the values of variables, to
understand the Java environment, and to detect changes both to
the execution and to files being edited.
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paintComponent(Graphics) RETURN
Name Value
[ edu.brown.cs. bubbles.tuterial.romp.Board. Draw:
[ *UNE* 62
- [Jd@64 java.awt.Dimension (68)
o [ graphics @62 edu.brown.cs.seede. poppy.PoppyGraphics (1)
o] i@65 java.awt.Insets (138)
[ inehcoord@a2 1.767767
oI m@96 edu.brown.cs.bubbles tutorial.romp.Magnet (115)
o= Jthis edu.brown.cs.bubbles.tutorial.romp.Board.DrawA. ..
variables | Line Graph | call Tree | call Graph | Output | AWT-EventQueue-0
4 [ ]»
a) Variable view showing time slider and values
paintComponent(Graphics) RETURN

c) Initial graphical output window

drawDotinches

RETURN

paintComponent{Graphics)

Variables Line Graph Call Tree Call Graph
Stack View L Data View L Output LAWT-EventQueue-o |
1 L] »
e) Stack view
paintCompenent{Graphics) RETURN

[~ ¥STDERR* (2)

Descriptor 2
Path *STDERR*

MAGNET BETNG
MAGNET BEING
MAGNET BETNG
0 MAGNET BEING
Contents MAGNET EETNG
MAGNET BETNG
MAGNET BEING
MAGNET BETNG
MAGNET BEING

DRAWN
DRAWN
DRAWN
DRAWN
DRAWN
DRAWN
DRAWN
DRAWN
DRAWN

k\lariahlea L Line Graph LCaII Tree L\ Call Graph Loutput L\AWT-EventQueue-n |

) File output view
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paintComponent{Graphics) RETURN

drawCircleinche:

drawPendulum

draw

nches

drawDotinches

4] I

[»

Variables | Line Graph | Call Tree | Call Graph | Output | AWT-EventQueue-0
< D
b) Call graph view of execution
paintComponent{Graphics) RETURN

d) Graphical output after editing

paintComponent

paintComponent{Graphics) RETURN
- inchCoord@ga2
Tihfg;’;g? 82 - 1.767767
o paintComponent @ 82
E‘;::I{rg:nmpnnent @99 inchCoord=(float)(2.5/ Math.sqrt(2))
= STATEMENT

Variables L Line Graph L Call Tree L Call Graph

L Stack View \

Data View LOutput LAWT-EventQueue-U L\Iariahle History |

[4

I »

f) Data view showing variable dependencies

edupbrowncsibubble sktutorialbromphE oardeOrawAreappaintComponent( )
drawCircleInches(@, O, 1, graphics);

// Dots on the diagonals

float inchCoord = (fleat) (2.5 / Math.sgrt(2));
drawDot Inches(inchCoard, inchCaord, .Sf, graphics);
drawDot Inches| -inchCaord, inchCoord, .5f, graphics);
drawDot Inches(inchCoord, -inchCoord, .Sf, graphics);
drawDot Inches(-inchCoord, -inchCoord, .Sf, graphics);

/f Dot in the center (get rid of this)
L] drawDotInches(0, 0, .S5f, graphics);

#/ Dot in the upper right [post of pendulum)
drawDotInches(2.25f, 2.25f, .5f, graphics);

#/ Draw magnets
graphics.setColor(Color. red) ;
for (Magnet m : magnets) {

edu.brown.cs.bubbles.
edu.brown.cs.bubbles

B ea— . —
ledu.brown. cs bubbles .tutorial . ronp Magnet (2852) ::
ledu.brown. cs . bubbles .tutorial . ronp.Hagnet (2858) ::
edu.brown.cs bubbles . tutorial . ronp Magnet (2864) ::

h) Editor view showing highlighted line and tool tips

edu.brown.cs.bubbles.

Figure 1: Views of the continuous execution display bubble. The main view (a) shows the variables in the current context.
The methods used in the current context are shown in a call graph (or tree) view (b) or in a stack view (d). Graphics output
for underlying or user selected component can be displayed (c and d). Variable dependencies for a user selection is available
(f), as is the output to files or the console (g). The interface also coordinates with the Code Bubbles editor (h).

While SEEDE could be made to work with any existing pro-
gramming environment, we found it simplest to make the proto-
type work with Code Bubbles. Code Bubbles made it easy to
create a new display that did not interfere with or take space
away from existing displays. It simplified determining what files
the programmer is working on since it maintains the program-
mer’s current working set including all relevant source code edi-
tors. The existing message interfaces made it easy to implement

273

the system as a separate process which facilitated debugging and
experimentation, and ensured that the system did not interfere
with the actual environment.

SEEDE consists of five main components. The first is a con-
troller that handles all communication and starts and stops the
simulated execution as needed. The second is a file manager that
maintains the current contents of all active files and updates their
abstract syntax trees as they change. The third is a set of three
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ECLIPSE PLUGIN

Value Cache

Controller

I

- Interpreter

File Manager

Figure 2: Overview of the SEEDE architecture. SEEDE runs
as a separate process that talks to both Code Bubbles and
Eclipse. SEEDE itself consists of 5 components. The control-
ler manages the communications and execution. The file
manager tracks the active files and handles recompilation
Three interpreters are combined to do the simulation, one
for editable code, one for compiled code, and one for special
cases. The value cache maintains values over the whole run
The modeler provides models of graphics, files, synchroni-
zation and I/O to mimic the external environment.

BICEX

CODE BUBBLES
Modeler

interpreters, one for abstract syntax trees to handle code that is
or could be edited, one for byte code to handle library and other
static code, and one to handle native methods and special cases.
These interpreters utilize the fourth component, a value cache,
that tracks all values over time. The final component is a suite of
models that reflect the external environment.

The SEEDE architecture is engineered to meet the require-
ments of Section 2. The architecture is designed to be fast enough
to re-execute as the user types. It is capable of restarting execu-
tion on each edit. It minimizes the amount of information that
needs to be sent back for display purposes. The implementation is
a simulation that starts with the environment at a breakpoint and
values from the debugger are cached. Values are then only
changed in the simulation, ensuring idempotency. The simulator
uses the Eclipse parser to generate valid abstract syntax trees in
the face of errors and detects both syntactic and semantic errors
that need to stop execution. Finally, by effectively recompiling
and reexecuting all changed files, it can handle a wide range of
edits including adding new fields, variables, methods, classes, etc.
The use of models enables it to handle I/O and graphics opera-
tions within the simulator without affecting the external environ-
ment. Details of the essential design decisions are outlined below.

5.1 The Controller

The first component is the controller. The controller mon-
itors messages both from Eclipse (via the Code Bubbles plug-
in) and from Code Bubbles itself to maintain a set of execu-
tion environments each defined by a stopped debugging run.
The controller uses the message interface to determine the
threads that are stopped and creates an internal execution for
these threads without any additional user input. It assumes that
the execution has stopped at the beginning of the stopped func-
tion(s). The system still works if this assumption is not valid (i.e.
the user stopped the method with a breakpoint in the middle)
provided that none of the values relevant to the execution of the
function was yet affected (i.e. the function is idempotent up to the
stopping point).

For each execution environment, the controller tracks the set
of files that are active and controls the simulated execution. The
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set of active files is maintained automatically by BICEX by moni-
toring changes to the user’s working set that contains the SEEDE
display, a functionality provided by Code Bubbles. When the exe-
cution completes, the result is sent asynchronously via the mes-
saging interface to Code Bubbles and the displays are updated
accordingly.

The controller monitors messages from Eclipse indicating
that a file has been edited. If the file is one of those associated
with a simulated execution, that execution is stopped if it is run-
ning, the changed file is updated, the project is recompiled using
the change, and the execution is restarted. Multiple edits are
grouped when possible.

The controller handles requests from Code Bubbles, including
changing the initial value of variables, adding variables to be
viewed as graphical components. removing executions when
they are no longer needed, expanding the set of sub-values of a
value, and returning the dependencies of a variable at a particular
location.

5.2 The File Manager

The file manager is responsible for tracking the current state of
all active files and building resolved abstract syntax trees for each
execution environment as the files change. Compilation is han-
dled using the Eclipse Java parser to build abstract syntax trees,
and the fast and forgiving compiler from the open-source S° sys-
tem [52] to resolve these trees against other current files and the
rest of the project.

5.3 The Interpreters

The next component is a combination of three interpreters that
work off the same value base and the same global clock. The first
is an interpreter for abstract syntax trees that is used for code
that the user can change. The second is an interpreter for byte
codes that is used for library methods as well as parts of the sys-
tem which are not being edited. The third is an interpreter to
handle special cases such as native methods.

The abstract syntax tree interpreter uses the resolved abstract
syntax trees generated by the file manager. This interpreter is
error tolerant and lets the simulation work without the need to
save files or do code generation which could be expensive. The
byte code interpreter uses ASM [9] to load class files from the
class path. This interpreter lets SEEDE run real programs that use
libraries without their source and to efficiently execute those
parts of a larger program the user is not working on. Both inter-
preters update the special variable *LINE* to show the currently
executing line.

The special case interpreter is used to handle code that can-
not be directly interpreted, for example native methods, to deal
with code that affects the outside world, and to make the overall
process more efficient. Several classes, notably String, Class, and
File are handled as internal objects rather than run-time objects.
Strings are handled this way for efficiency; classes are handled
because the interpreter has its own type model that needs to be
updated dynamically; files are handled to accommodate the file
model described in Section 5.5

The special case interpreter runs in place of the byte code
interpreter for specific classes and methods. Where it is possible,
for example the various native math and string routines, the
method is handled by appropriate code in the interpreter itself. In
some cases, for example hash codes, the system will query the
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debugger for an appropriate value. For other cases, the inter-
preter invokes methods in a small library SEEDE installs in the
user's process. This is used, for example, to get information about
resources from a class loader.

All three interpreters utilize a common clock that increments
with each write, a common run time stack for each interpreted
thread, and a common context for looking up variables by name
or reference. The choice of which interpreter to use is determined
at the start of each method call.

5.4 The Value Cache

The fourth component in the SEEDE framework is a value cache.
One of SEEDE's innovations is that it returns the complete evalu-
ation. The value cache is designed to facilitate this by maintain-
ing all values over time. A simplified version of the cache is then
sent to Code Bubbles where it is used as the basis for the various
displays.

The value cache starts with a set of base values which can
represent the Java primitive types, the types that are managed
internally (String, Class, and File), and generic types for arrays
and objects. The cache also defines a reference value which is a
map that yields the actual value of the reference at any particular
time. Each variable in the interpreter, as well as each field of an
object and each element of an array, is assigned such a reference
value.

In addition to these explicit values, the value cache provides
latent values that can refer to arbitrary expressions or nested
variables in the debugger. When a value from the debugger is
accessed, the information returned only includes the top-levels of
any nested structures. Any deeper references are replaced with
latent values. Latent values are only computed when they are
needed by the execution and are not reported to Code Bubbles.
This can greatly reduce the amount of information needed from
the debugger and passed to Code Bubbles and thus significantly
speed up the overall execution process. Users can manually
request additional values to be displayed for a variable or change
the initial value of a variable retrieved from the debugger.

The value cache also tracks the unique identity of each object
so that two references to the same object actually point to the
same value. Reference information is passed to Code Bubbles,
again reducing the amount of data that needs to be communi-
cated. Another similar optimization notes what values have not
changed from one run to the next and passes a reference to the
value in the previous run.

5.5 The Models

The final component of SEEDE is a set of models that reflect the
effect of the code on the external environment. These let SEEDE
simulate and report external changes without actually affecting
the environment. SEEDE currently supports a file model, an
input-output model, a graphics model, and a synchronization
model. Other models, such as one supporting database opera-
tions, can be added.

The file model provides a simulated file system where the
program can create and remove files and change file properties
without actually affecting the external environment. This lets the
program perform file operations without any side effects. The
simulated file system can be quickly restored to the initial config-
uration.
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The input-output model tracks the contents of reads and
writes done by the interpreted code. It returns any writes done to
files, including standard output and standard error, to the front
end along with the time of the write so that the corresponding
output can be displayed. It maintains the original file position of
each file being read so that read operations will be idempotent. It
also maintains a console input buffer. The first time the program
requests console input, the user will be prompted accordingly.
When the program is rerun, say after an edit, the saved input will
be reused.

The graphics model provides a means for displaying or
understanding the graphics operations that are done during an
execution. This is implemented by replacing any Graphics param-
eter in a paint routine with a special class based on Java’s Debug-
Graphics class that records all operations and the times of each
operation. The result is passed to Code Bubbles so that the effec-
tive graphics display at a given time can be recreated and shown
to the user. This is done automatically for the various Java paint
routines.

The graphics model can also be used to look at graphical wid-
gets that are built or modified in the simulated code. This is done
by having the user select the widget and request a graphics dis-
play. The simulator then, once the overall run is finished, simu-
lates a separate call to paint on the selected widget using the
special Graphics class and returns the result for display.

The synchronization model is used to simulate Java locks
among the threads that are being interpreted. If there is only one
such thread, this model is ignored. The model does not currently
handle locking with respect to running threads in the application
that are not being interpreted.

6 USER INTERFACE

The user interface for continuous execution, shown in Fig. 1, is
key to making the tool both usable and useful. The interface can
be initiated in one of two ways. First, there is a menu button to
“Start Continuous Execution” which finds an execution stopped
at a breakpoint and sets up SEEDE for that execution using the
editors in the current working set. Second, the user can right
click on a test case in the test management bubble and select
“Show Execution”. This automatically creates a debug session for
the test case, sets a breakpoint at the start of the test, runs the test
case up to that breakpoint, removes the breakpoint, and then
starts up SEEDE. In this case, Code Bubbles automatically deter-
mines all the project code that is used in the test case using its
coverage tool and indicates that these sources should be viewed
as editable and hence interpreted using the abstract-syntax tree
interpreter and included explicitly in the output display.

The user interface is designed to display the full execution of
the stopped method and everything it calls using multiple views
in a way that simplifies navigation and exploration while being
unobtrusive. It is designed to help the programmer focus on a
particular call while allowing easy exploration over time both
within that call and over the whole execution. It maintains the
current context the programmer is focused on, including the dis-
play and the time, and restores it after a change. It provides a
simple scroll bar at the bottom to navigate over time within the
execution. All views are synchronized to this scroll bar.

The user interface shows a single invocation of a single
method, automatically breaking the overall execution into execu-
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tions of individual methods. This helps the programmer focus
and minimizes the amount of display space needed so the user
has full access to the rest of the programming environment while
exploring. This also ensures that the user does not lose context
when scrolling over time. The calling context of the displayed
method is shown at the top of the window.

The interface provides multiple views of that single invoca-
tion. The main view, shown in Fig. 1a shows the values of vari-
ables in the current invocation at the selected time. This is a
hierarchical display similar to that provided by the debugger.
Local variables are identified with their declaration line number
to avoid confusion when multiple variables with the same name
exist in the method.

The user interface currently only shows routines that are
interpreted based on source code, i.e. with the abstract-syntax
tree interpreter. System routines and parts of the system that the
user is not currently editing are omitted. This keeps the display
and the set of contexts at a reasonable size. The user can open a
new editor to cause the execution to be reinterpreted and the cor-
responding code to be included in the display.

Because only one invocation or context is shown at a time, it
is essential to the interface that the user be able to navigate to
other relevant contexts easily and quickly. Generic navigation
commands let the user go to an inner context at a particular time,
go to the next or previous invocation of the method, go to the
next or previous line, go to the next or previous time the current
line was executed, or go to the parent context. The overall bubble
includes breadcrumbs at the top to let the user go to any particu-
lar parent context of the current context.

Additional views are provided primarily to aid in navigation.
The call graph and call tree views show the method calls as in
Fig. 1b. These differ in that the call tree contains a node for each
invocation whereas the call graph contains one node for each
method. The user can right click on a node here to change the
current context to one corresponding to the displayed function.
With the call tree, the context will change to the given invoca-
tion. For the call graph, the context will be the first invocation of
that method from the current context. The stack view of Fig. le
shows a compact display of the stack over time within the con-
text with different called methods color-coded similar to [55]. In
the stack view, the user can select a particular inner context to
become current.

The user can also navigate using data flow. One way of doing
this is to right click on a variable value and go to the time and
context where that value for the variable was set. An alternative
is to select a variable value and request the data flow dependency
graph leading to that value. This is computed mainly by the
SEEDE back end upon request and results in a display showing
dependencies as in Fig. 1f that can then be used for navigation.

Two additional views provide access to the input/output and
graphics models computed during the execution. The first shows
all file outputs, organized by file. The text output displayed for
each file is synchronized with the current time as shown in
Fig. 1g. The second shows a representation of graphics output
over time. Examples of this are shown in Fig. 1c and Fig. 1d.

The user interface of SEEDE is also coordinated with editors
in the programming environment. The user can request a view of
the current method or a method selected in the call graph, and a
corresponding editor will be created nearby on the display. The
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current line being viewed in the SEEDE display will be high-
lighted in any editors displaying that line. The highlighting
changes dynamically as the user uses the time scroll bar or other
navigation techniques. Finally, hovering over a variable active in
the SEEDE execution in an editor will display a textual view of
the value history of that variable as a tool tip. This can be seen in
Fig. 1h.

7 SYSTEM LIMITATIONS

Since the code is being interpreted potentially on each keystroke,
performance can be a major concern. However, since the system
is targeted toward developing and debugging a single routine and
everything it calls at a particular point in the execution, the
amount of interpretation may not be that great. Currently we are
processing about 150,000 variable updates a second (the inter-
preter clock ticks each time a value is written). For the examples
we have been looking at, response, other than the initial run, has
not been a problem. The system also currently includes a time out
after about a minute (10,000,000 writes) to handle particularly
long-running computations or accidental infinite loops.

The initial run involves loading all the necessary binary files
from the class path and loading all variables accessed by the code
that are not explicitly defined in the run from the debugger. An
initial run on a complex system, either one that involves a large
amount of library code, or that involves large or complex data
structures that are actually accessed, can take time. The maxi-
mum we have seen in our examples is about one minute. Most
examples we have seen, however, complete the initial run in ten
seconds or less.

The second limitation involves what the system can and can-
not do. There are obvious limits in terms of the interfacing with
the outside world when the interpreter must ensure that nothing
changes. For example, using sockets to communicate with an
external program is problematic. Other limits are based on the
current prototype implementation. For example, we currently do
not handle jar and zip native methods or random access files. The
focus on the execution of a single routine means that edits that
would affect the initial environment are not reflected in the out-
put. We provide the user with the ability to change the initial
environment to accommodate this.

Handling synchronization of multiple threads is complicated
and SEEDE does not necessarily do it correctly. The problems
arise because some of the threads being synchronized may not be
included in the simulation. It is difficult to synchronize running
threads with the threads being simulated, to detect lock changes
in the running threads and propagate them to the threads being
simulated, or to continually and consistently propagate changing
values from the running program. Currently, SEEDE simulates
locks and values correctly between simulated threads and ignores
threads that are still running. Another problem with multiple
threads that we currently ignore is that the result could be non-
deterministic and could change on each edit.

There are also limitations in the user interface. Providing
only one frame at a time in the stack might be confusing to those
accustomed to seeing the complete call stack in the IDE debugger.
Our approach is designed to facilitate quickly changing time (for
example using the time scroll bar) without causing the program-
mer to lose context. Another problem with the interface is that
we only present values that are actually used in the execution. If
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the programmer is used to an IDE where they can look at arbi-
trary values and through arbitrary nestings, they might miss this
capability. To accommodate this, we have added specific user
commands to expand the presented values on demand. The user
interface also does not currently provide the toString output for
each value, making the variable display less useful than the
default debuggers. Other potential user interface limitations, such
as the size of the scroll tabs, the unintuitiveness of colors in the
scroll bar, and the difficulty in understanding and using the con-
trol flow navigation views, were pointed out in the user study.

8 EVALUATION

We did a user study with 29 participants to evaluate the effective-
ness of using SEEDE for software development and debugging. In
the study, a participant first reads a tutorial to get familiar with
the Code Bubbles environment and learn how to use SEEDE.
Then he/she does two tasks: a development task (Task 0) and a
debugging task (Task 1). To implement a controlled experiment, a
participant was asked to use SEEDE to do only one of the two
tasks (chosen at random). This way, for each task, we had partici-
pants who did the task using and not using SEEDE, and we com-
pared their performance. For each task, we asked questions,
collected the participant’s created program, and recorded how
long it took the participant to finish. We determined whether the
participant successfully completed the task by the answers they
gave and the program they created. After the tasks, we asked
each participant to complete a survey concerning (1) the partici-
pant’s background, (2) the usefulness of SEEDE, (3) whether they
liked SEEDE, and (4) how to improve SEEDE.

Our results show that (1) overall participants felt positive
about the utility of SEEDE for the task they did and for program-
ming tasks in general; (2) overall participants liked using SEEDE;
(3) SEEDE markedly helped participants succeed in the debug-
ging task; and (4) SEEDE helped participants succeed in the
development task, though this was not statistically significant.

8.1 The User Study

We recruited 29 participants from among computer science stu-
dents at Brown University who had taken at least one course on
object-oriented programming. Of the participants, 4 were gradu-
ate students and 25 were undergraduate students. Our survey
results show that 27 out of the 29 participants had taken at least
one additional advanced programming course.

In the study, a participant first reads a tutorial on how to use
Code Bubbles and SEEDE and then does two tasks: a development
task (Task 0) and a debugging task (Task 1). We randomly
assigned a participant to either Group A or Group B. This random
assignment yielded 13 participants in Group A and 16 partici-
pants in Group B. We asked participants in Group A to do Task 0
using SEEDE and do Task 1 without using SEEDE. We asked par-
ticipants in Group B to do the opposite, i.e., to do Task 1 using
SEEDE and do Task 0 without using SEEDE. We evaluated SEEDE
by (1) comparing the performance of the participants in Group A
with those in Group B for each task; (2) asking each participant
(in the survey) whether he/she agrees that SEEDE was useful for
doing the task (we asked the participant to choose a score from 1
to 5 where 1 represents Strongly Disagree and 5 represents
Strongly Agree); (3) asking each participant whether he/she
agrees that SEEDE was useful for doing a programming task in

277

S. Reiss, Qi Xin, J. Huang

general (using scores from 1 to 5); and (4) asking each participant
whether he/she likes SEEDE (using scores from 1 to 5 where 1
means I do not like it at all and 5 means I like it very much).

The performance of a participant was evaluated by success,
i.e., whether the participant succeeded the task, and efficiency,
i.e., how long it took the participant to finish the task. We evalu-
ated the success of a participant by checking whether the partici-
pant correctly answered the questions associated with the task;
whether the program created by the participant passed the test
suite; and whether the program created by the participant was
correct in general and did not over fit to the test suite. For the lat-
ter, we manually checked the code the participants wrote.

After the study, we surveyed each participant, asking them to
provide their background, to rate their programming skill (in five
levels from beginner to expert), to indicate the courses they had
taken, and to provide feedback on whether the tutorial was use-
ful, whether SEEDE was useful for doing the task they did and for
doing a programming task in general, whether they liked using
SEEDE, and how SEEDE can be improved.

Each recruited participant did the study on a computer with 4

AMD Phenom II X4 955 cores and 16G memory where the Code
Bubbles environment and SEEDE were previously installed. We
asked each participant to finish the tutorial within 30 minutes
and to finish each task within 40 minutes. (We did a pilot study
with another three participants to determine these times. These
participants did not participate in the formal study.)
8.1.1 Tutorial. The goal of the tutorial is to teach a participant
how to use Code Bubbles and SEEDE. More specifically, it taught
a participant (a) how to open, move, and close a bubble of code
fragment (e.g., a method); (b) how to run the program against the
test suite; (c) how to invoke SEEDE; (d) how to use SEEDE to see
and understand the continuous execution results; (e) how to nav-
igate within SEEDE to show the continuous execution results for
different methods; and (f) how to use the Code Bubbles’ debugger
without using SEEDE.

In the tutorial, a simple task was used to teach the above

skills. The task was to write code to complete the development of
the method pop for a program called ArrayStack (153 LOC) which
implements a stack structure using an array. The incomplete pop
method contains only one line as return null. The participant
should create a correct implementation for it such that the com-
pleted program can pass all the test cases one of which the origi-
nal, incomplete program failed. By reading the tutorial, the
participant was guided to finish the task step by step. The partici-
pant was guided to first write code to create a buggy version of
the pop method. Next the participant was guided to fix the bug to
finish the task in two ways: using SEEDE and using the Code
Bubbles debugger without SEEDE.
8.1.2 Task0 (development task). In this task, a participant needs to
write code for the method join in a Java class named MergeSort.
The original version of MergeSort (72 LOC) is from Chapter 12 of
Savitch's textbook [58] where the method join (40 LOC) accepts
as input four parameters: an array a of doubles, a starting index
begin, a splitting index splitPoint, and an ending index end. On
input, the array elements from begin to splitIndex (inclusive) and
the array elements from splitIndex+1 to endIndex (inclusive) are
both sorted in ascending order. Given the four parameters, join
changes the elements of a such that the elements from begin to
end (inclusive) are sorted in ascending order.
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Table 1. Results of the User Study
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Task Group A (13) Group B (16)
as

Success #(%) FoundFault #(%) Time (min.) Success #(%) FoundFault #(%) Time (min.)
Task 0 6(36.2) N/A 29.5 7(438) N/A 731
Task 1 2 (15.4) 5 (38.5) 21.5 7 (43.8) 12 (75) 20

Table 2. Survey Results from the User Study

SEEDE
Group .
. . Usefulness for Usefulnessin  Degree of
(#Participants)
Task General Favor

A (13) ) 3.8 3.7

B (16) 3.4 3.9 3.6
A&B (29) 3.8 3.8 3.7

For the development task, we created 10 test cases: 7 to test
the method join directly, and 3 to test the sorting method from
which join is called. The original program passed all the test
cases. To create an incomplete method for the development task,
we removed all the original code from the method body of join.
The incomplete program only passed one test case. The goal of
the task is to create a correct implementation for join such that
the created program can pass all the test cases. Participants in
Group A were required to use SEEDE for doing the task. Partici-
pants in Group B were required not to use SEEDE.

It is often challenging to design a development task for a user
study that is not too easy but can still be done within a reason-
ably short amount of time (e.g., 40 minutes). We chose the
method join from a mergesort program for the task because (1)
the input parameters and the expected semantics of join are easy
to understand, and (2) writing code for join is not trivial but still
not too difficult. The participants of our pilot study all made mis-
takes in their coding but still finished the task within 40 minutes.
8.1.3 Task1 (debugging task). In the debugging task, a participant
needs to locate and fix a real bug (id: MU_AK_ 1) contained in the
ged method (59 LOC) of the Apache Commons Math project
(94,609 LOC). The bug was chosen from the 26 bugs used in [34]
for evaluating a user-interactive fault localization approach. The
bug caused an integer overflow failure and is exposed by a failed
test case associated with the project. A correct fix to resolve the
failure, according to the developer patch for this bug, is to change
the if-condition in ged from u*v == 0tou==0 || v==0.

Debugging is in general laborious and time-consuming. A
person can take hours, sometimes even days, to fix a real bug. We
chose the bug MU_AK_1 for the debugging task because (1) the
fix is relatively simple, and (2) the expected semantics of ged is
generally known: it computes the greatest common divisor of
two numbers. In the task, a participant (from either Group A or
Group B) was told that the bug was in the method gcd. This
makes it possible for a participant to do the debugging task
within a relatively short amount of time. (Two of the three partic-
ipants in our pilot study successfully did the task within 40 min-
utes.) At the same time, locating and fixing this bug is not trivial
since the implementation of the method gecd is not the common,
one; it is based on an algorithm described in [65] and is 59 LOC.

The project containing the bug has thousands of test cases. It
takes about three minutes to run all these tests. This makes a par-
ticipant wait too long to check a sequence of fixes. To mitigate
the problem, we only used the 52 test cases for the failed test class
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(MathUtilsTest) and removed all others. For the task, the partici-
pant was informed that there is a bug in the gcd method exposed
by a failed test case. We did not provide any more information
(e.g., which statement in gcd contains the bug). The program
fixed by the participant should pass the test cases and be valid in
general (determined by our manual examination). In the task,
participants in Group B are required to use SEEDE while partici-
pants in Group A are required to not use SEEDE.

8.2 Results

Table 1 shows the study results. It lists the number of partici-
pants in each group who succeeded in each task, the number that
found the fault for Task 1, and the average time it took for the
participants to perform each task.

Table 2 summarizes the survey results.. The two usefulness
questions used the values 1-Strongly disagree, 2-Disagree, 3-Neu-
tral, 4-Agree, and 5-Strongly agree. The degree of favor question
used the values 1-Does not like it at all, 2-Does not like it very
much, 3-Neutral, 4-Like it, and 5-Like it very much. As seen in the
table, we found that overall (1) the participants feel positive about
the utility of SEEDE for the task (Task 0 for Group A and Task 1
for Group B): the usefulness score on average is 3.8 (above neu-
tral and close to useful); (2) the participants also feel positive
about the utility of SEEDE for a programming task in general: the
usefulness score on average is 3.9 (above neutral and close to use-
ful); and (3) participants liked to use SEEDE: the score for this
question is 3.7 (above neutral).

We found that the participants liked seeing the continuous
execution results that SEEDE creates. In the survey, we asked
each participant the question: If SEEDE was useful, how did it
help? And we got many answers similar to the following:

“Being able to scroll through the execution process was

very intuitive, and helped me track variables very easily.”
By comparing the performance of participants between
Group A and Group B for each task, we found that SEEDE mark-
edly helped participants in Group B during the debugging task
(Task 1), although this was not statistically significant (Fisher’s
Exact Test [18], p=0.13) due to the small numbers of completed
tasks.). As shown in Table 1, 7/16=43.8% of the participants from
Group B successfully did the task using SEEDE, but only
2/13=15.4% participants from Group A succeeded without using
SEEDE. The time lengths used by the two groups for finishing
Task 1 are comparable. A participant who failed the task still
might have successfully identified the location of the bug, and we
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asked each participant explicitly to identify the faulty code.
12/16=75% participants from Group B successfully identified the
bug location using SEEDE, but only 5/13=38.5% participants from
Group A did so without using SEEDE.

In the program of Task 1, when the two integers u and v take
the value 3145728 and 5242880, the if-condition u*v evaluates to 0
because of integer overflow. For this task, it is not easy for one to
identify and fix the bug without actually looking at the run-time
values. By using SEEDE, one sees the execution of the buggy
method ged in a continuous way. At each step, the executing
statement is highlighted. By viewing the highlighted statements
in a continuous way, a participant can identify the execution path
of ged with the failure-exposing input, and easily find that the
else-branch of the if-statement whose condition is u*v 0is
taken even though u and v both have non-zero values. This is
very suspicious. Using a debugger is more difficult in this case. A
participant needs to set up a breakpoint first and goes step by
step to examine the values. The debugger only allows a partici-
pant to see the execution for one step. If the participant misses a
step, he/she cannot go backwards in the debugging run and
might need to start over.

Comparing the performance of participants on Task 0 (the
development task), we see that SEEDE helped participants from
Group A to succeed in the task, but this result is not statistically
significant: 6/13 = 46.2% participants from Group A succeeded
using SEEDE, and 7/16=43.8% participants from Group B suc-
ceeded without using SEEDE. Though SEEDE did not signifi-
cantly help participants in Group A succeed in Task 0, our survey
results show that participants found SEEDE to be useful during
the task: the average score they gave for measuring the useful-
ness of SEEDE for this task is 4.2 (4 means a participant agrees
that SEEDE was useful). These results are consistent with previ-
ous findings on the effectiveness of live programming [5,11].

Based on the results, we believe SEEDE was actually useful
for this task, but whether a participant can succeed or not largely
depends on his/her programming ability with respect to the com-
plexity of the problem. A good participant can develop a join
method quickly that is either correct or nearly so and does not
need SEEDE for any help. A weaker participant may make many
mistakes. Though SEEDE was helpful, he/she may still fail the
task within the allotted time (40 minutes).

In the survey, we asked each participant to provide sugges-
tions on how to improve SEEDE to better help software develop-
ers in the development/debugging process. 25 of the 29
participants provided suggestions. We found that 19 of the 25
participants thought that the user interface can be improved. In
fact, many user interface problems are not really related to
SEEDE but to Code Bubbles (e.g., that bubbles of code used in
Code Bubbles can be better designed). In terms of the user inter-
face of SEEDE, participants thought that it can be improved to
show the values in a more intuitive way and can be simplified. 7
of the 25 participants thought that some parts of SEEDE (e.g., the
call tree and the different colors in SEEDE’s sliding bar) were
confusing. We realized that it is possible that our tutorial might
not explain those parts of SEEDE in the best way, although over-
all the participants think the tutorial was helpful (the average
score of usefulness they gave for the tutorial is 4.1). In addition, 2
participants suggested adding new features.
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8.3 Threats to Validity

It is challenging to choose the development and the debugging
tasks for evaluating SEEDE: they should not be too easy or too
hard for the limited time the participants have and should match
the programming abilities of the participants. Our selected tasks
could be biased in a way to either underestimate or overestimate
the effectiveness of SEEDE. The study may also be biased in our
usage of college students rather than professional programmers,
the varying programming ability of the participants, the rela-
tively small number of users, the relatively small number of tasks,
the lack of experience the users had with both Code Bubbles and
SEEDE, the limited amount of time spent learning the environ-
ment, the time limits imposed on the particular tasks, and possi-
ble bugs in both SEEDE and Code Bubbles.

We believe the idea of SEEDE, i.e., providing the run-time
executing values in a continuous way, is useful, though the user
interface of SEEDE may still be improved.

8.4 Experience in the Wild

SEEDE has been available as an unadvertised and experimental
part of Code Bubbles for six months and we have gotten feedback
from a limited set of users, primarily in-house.

The first observation is there is a sweet spot for the use of
SEEDE. Cases where the fix or the code is small are better done
using Java hot swapping because it has lower overhead for a sin-
gle use. Cases where there are major changes to a large fraction
of the system are not suitable for live programming. SEEDE is
most useful when the user is working on a bug or writing code
that is non-trivial but does not require major changes. Even then,
experience showed that it took some time to get used to the facil-
ity and to learn the best ways to navigate and use its capabilities.

Otherwise, early experience with the facility has demon-
strated its utility. Code Bubbles produces fully anonymous logs
for users who opt-in to this facility. Analysis of these logs for the
last six months shows that the facility has been used about once
every two hours of active use of the environment, with about 100
edits per use. These numbers are probably not representative
since usage of the facility includes some experimentation, debug-
ging, and demonstrations.

9 AVAILABILITY

SEEDE is integrated into the currently available Code Bubbles
environment. Code Bubbles can be obtained in either open source
or binary form at http://www.cs.brown.edu/people/spr/codebub-
bles. The SEEDE execution engine is available from GitHub
(https://github.com/StevenReiss/seede). A demonstration video is
available at https://www.youtube.com/watch?v=GpibSxX3Wlw.
The detailed results of the study are available upon request.

10 CONCLUSION

Live programming is an interesting concept that can be helpful to
the programmer for exploratory programming and debugging.
SEEDE demonstrates that it is possible to do live programming
for large, complex, object-oriented systems. It provides both an
efficient and effective implementation that meets the necessary
requirements for practical live programming, and a user interface
that lets the programmer see and understand the resultant execu-
tion. The practicality of the approach has been demonstrated in a
user study.
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