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ABSTRACT 
Users frequently modify a previous search query in hope of 
retrieving better results. These modifications are called query 
reformulations or query refinements. Existing research has studied 
how web search engines can propose reformulations, but has 
given less attention to how people perform query reformulations. 
In this paper, we aim to better understand how web searchers 
refine queries and form a theoretical foundation for query 
reformulation. We study users’ reformulation strategies in the 
context of the AOL query logs. We create a taxonomy of query 
refinement strategies and build a high precision rule-based 
classifier to detect each type of reformulation. Effectiveness of 
reformulations is measured using user click behavior. Most 
reformulation strategies result in some benefit to the user. Certain 
strategies like add/remove words, word substitution, acronym 
expansion, and spelling correction are more likely to cause clicks, 
especially on higher ranked results. In contrast, users often click 
the same result as their previous query or select no results when 
forming acronyms and reordering words. Perhaps the most 
surprising finding is that some reformulations are better suited to 
helping users when the current results are already fruitful, while 
other reformulations are more effective when the results are 
lacking. Our findings inform the design of applications that can 
assist searchers; examples are described in this paper. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Query formulation 

General Terms 
Algorithms, Measurement, Human Factors 

Keywords 
Query reformulation, search effectiveness, query log analysis. 

1. INTRODUCTION 
Of the roughly 2 billion daily web searches made by internet 
users [8], approximately 28% are modifications to the previous 
query [29], also known as query reformulations or query 

refinements. For example, a user may search for ‘pizza Seattle’, 
but alter their query to ‘sausage pizza Seattle’ if they are 
unsatisfied with the results from the initial query. Reformulations 
make up a large portion of web search activity. In a study of 
Dogpile.com logs, Jansen et al. [16] reported that 37% of search 
queries were reformulations when ignoring same queries. A study 
of Altavista logs [17] identified that 52% of users reformulated 
their queries. 

Search engines and humans both try hard to come up with 
appropriate query reformulations. Many web search engines today 
offer query reformulation suggestions by, for example, mining 
query logs. Users are manually reformulating their queries based 
on the search results from the initial query, and their knowledge 
and experience of how search engines work. The reformulation 
process is an iterative endeavor between users and search engines 
in getting a satisfactory set of results.  

While the search engine side of query reformulation has been 
studied extensively by the search companies and in prior 
information retrieval research, how users perform query 
reformulations has received less attention. Among the benefits to 
understanding how people search is being able to automatically 
propose query reformulations. If many users searching for 
‘hummus’ reformulate their query to ‘hummus recipe’, the search 
engine can be proactive and suggest ‘hummus recipe’ when the 
user searches for ‘hummus’. Users can also benefit from an 
improved search experience when performing reformulations. 
Currently, search engines present the same interface regardless of 
whether the user gives it a new query, same query, or query 
reformulation. Being able to accurately detect when a user is 
making a query reformulation gives the search engine an 
opportunity to present an improved interface.  

The goal of this work is to look at the types of query reformula-
tion users perform and evaluate them using effectiveness metrics 
such as click data. In order to study these metrics, we first 
construct a taxonomy of query reformulation strategies adopted 
by users. Next, we build a classifier for these different types of 
reformulations. While there are some existing classifiers that 
determine whether a query is a reformulation, ours is the first to 
separate them into reformulation types. 

Our work makes three specific contributions: 

• A comprehensive taxonomy of query reformulation strate-
gies defined by formal language, developed by combining 
the different types of reformulations reported in existing 
work and iterative experimentation over query logs (Sec-
tion 3). 
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• An unsupervised rule-based classifier with high precision 
in detecting the different query reformulation strategies 
(Section 4). 

• Analysis of correlations between query reformulation 
strategies and effectiveness metrics, giving us a better 
overall understanding of query reformulation strategy ef-
fectiveness (Section 5). 

2. RELATED WORK 
2.1 Computer-Generated Reformulations 
Much of the work on query reformulation for web search has 
focused on offering automatically generated query suggestions to 
the user. The suggestions are typically shown on the same page as 
the search results. These query suggestions are built into every 
major search engine today. Prior research in this vein has explored 
computer-generated suggestions using query expansion [26], 
query substitution [22], and other refinement techniques [6][23]. 
Implicit relevance feedback from users is a common data source 
for computer-generated reformulations. For example, work by 
Baeza-Yates et al. [6] uses query logs to discover new query 
reformulations, finding similar queries using a cosine function 
over a term-weighted vector built from the clicked documents. A 
study by Anick [3] showed that these automatically generated 
reformulations were as effective as human constructed reformula-
tions, using metrics such as uptake and click behavior. 

2.2 Query Session Boundary Detection 
We process query logs containing raw search queries; therefore, to 
classify a query reformulation, we must first determine whether a 
query is indeed a reformulation instead of a new query. This is 
similar to the problem of detecting query sessions and their 
boundaries. Jansen et al. define a session as “a series of interac-
tions by the user toward addressing a single information need” 
[16]; Silverstein et al. [33] note, “A session is meant to capture a 
user's attempt to fill a single information need.” Therefore, 
sessions can be considered as a single query, followed by any 
number of reformulated queries. From this, our definition of a 
query reformulation is: a modification to a search query that 
addresses the same information need. Further deriving from these 
definitions, we can conclude that if we were able to correctly 
identify the boundaries of all query sessions, we would know 
which queries are initial queries and which are reformulations. 
Conversely, by identifying which queries are reformulations, we 
would be able to accurately group query sessions together. 
Therefore, the problem of identifying query reformulations is 
similar to the problem of detecting session boundaries. 

Most existing work identifies sessions using a simple temporal 
strategy, where a specific time interval of inactivity represents a 
boundary. This method is simple to implement and the definition 
is unambiguous. He et al. [15] and Ozmutlu [28] used time and 
common words to determine session cutoffs. Comparing several 
session detection algorithms, He et al. attained 73% precision and 
62% recall using time only, and 60% precision and 98% recall 
using time and common words together. Arlitt [4] found session 
boundaries using a calculated timeout threshold. Murray et al. 
[27] extended this work by using hierarchical clustering to find 
better timeout values to detect session boundaries. Their method 
had 97% precision and 76% recall on a human-classified dataset. 

More recently, Jones and Klinkner [21] presented evidence that 
any temporal cutoff is arbitrary and detects session boundaries no 
better than a random cutoff time. They evaluated the existing 
session boundary detection methods alongside their own. Their 
study reviewed these methods without considering same queries. 
Using the optimal cutoff time, 5 minutes, query reformulations 
were accurately identified 63% of the time. Combining the 
optimal features from prior work, that is, common word + prisma 
(see [3]) + time, they achieved 84% accuracy. Using only 
Levenshtein edit distance resulted in 85% accuracy. Lastly, their 
own combination of methods resulted in the best accuracy, 87%. 

2.3 Click Data Analysis 
Many researchers have studied click data as indicators of search 
relevance. An early inquiry by Joachims [19] reveals that click 
data can indeed be used to improve search relevance. Several later 
studies agree that click data are indicators of search result 
preferences and discuss best methods of analyzing click data 
[2][12]. Joachims et al. also find that analyzing clicks over query 
reformulations similarly provides useful information [20]. This 
data has also been shown to be helpful for improving search 
relevance [1][9]. Our study applies lessons learned from these 
reports of click data analysis. While they study the effectiveness 
of analyzing different click patterns, we study the effectiveness of 
reformulation strategies using different click patterns. 

2.4 Taxonomies of Reformulation Strategies 
Taxonomies of query reformulation have been developed for 
different types of search. A more comprehensive review of query 
reformulation in traditional information retrieval can be found in 
[10]. Here we focus only on the taxonomies developed by 
analyzing query logs. These are generally constructed by 
examining a small set of query logs. Some studies are out of date 
or incomplete. None have built an automatic classifier distin-
guishing reformulation strategies, as we have. 

Table 1 presents a mapping between our taxonomy of query 
reformulation strategies and the terminology for these strategies 
from prior work. Anick [3] classified a random sample of 100 
reformulations by hand into eleven categories. Lau and Horvitz 
[24], Jansen et al. [16], and He et al. [15] used the same 
reformulation categories—terms taken from linguistics [18]. As 
part of a study of re-finding behavior, Teevan et al. [34] con-
structed a taxonomy by looking through query logs, and 
implemented algorithms to detect a subset of the reformulation 
strategies. Whittle et al. [36] modeled some reformulation 
strategies using a graphical network. Bruza and Dennis [7] 
manually classified 1,040 queries into their own taxonomy. Guo 
et al. [13] also constructed a small taxonomy and used a 
conditional random field model to predict query refinements. Rieh 
and Xie [32] constructed conceptual reformulation categories like 
content, format, resource; these are not included in the table 
because their abstract nature makes them difficult to map against 
concrete reformulation techniques. 

3. REFORMULATION STRATEGIES 
We constructed our own taxonomy by combining the types of 
query reformulation identified in prior work (Table 1). We 
implemented a matching rule for each strategy, which was 
iteratively improved to find the best unsupervised algorithm. For  



instance, the ‘add words’ rule was modified to detect added words 
even when the other words were reordered. To determine if we 
were missing any other rules or needed to adjust existing rules, 
we ran our classifier over the AOL query logs and randomly 
checked the output. We optimized for reducing false positives 
while keeping false negatives low since we wanted a high 
precision classifier. From this, we tweaked several rules and 
added one that would detect a number of query reformulations 
that other rules did not, namely substring2. 

A few categories from prior work were either vague or difficult to 
detect, marked not detected in the table. For example, determining 
whether a query was a location reformulation as defined in [3] is 
subjective and would reduce the precision of our classifier. 
Categories marked not in data could not be classified because the 
queries were normalized (via lowercasing and punctuation 
removal) in our dataset. 

The query reformulation strategies (ordered by rule precedence) 
from Table 1 are described below in formal language notation. 

3.1 Definitions 
Let an underscore _ denote the space character; punctuation, 
represented by P comprises the three punctuation characters left 
in the query logs: the apostrophe, dash, and period; i.e. 

,.},{' −=P . The empty string is represented by λ. 

Let Σ be the alphabet of letters, digits, and punctuation, 
PU9]}-[0z],-a{[=∑ . ci is a character in that alphabet Σ∈ic , 

wi is a word in that alphabet ∗Σ∈iw , and zi is any string 
composed from that alphabet or space character ∗Σ∈ {_})( Uiz , 
including the empty string. 

                                                                 
1 Includes form acronym and expand acronym 
2 Includes substring and superstring 

  REFORMULATION 1.  WORD REORDER 
In a word reorder, the words in the first (initial) query are 
reordered but unchanged otherwise, producing the second 
(refomulated) query. This transformation can be defined formally 
using a recursive definition, 

⎪⎩
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⎧

⎯→⎯==

==

⎯→⎯

21212121

1221

__,__,__
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any  if
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Explicitly, either both queries contain the same two words but 
reversed, or removing the same word from both queries makes the 
second query a word reorder of the first query. The first condition 
is the base case and second condition is the recursive step. 
Example: seattle pizza palace  pizza seattle palace 

  REFORMULATION 2.  WHITESPACE AND PUNCTUATION 
The second query is a whitespace and punctuation reformulation 
of the first query if only whitespace and punctuation are altered in 
the reformulation. This can be defined recursively, 
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A whitespace and punctuation reformulation occurs when after 
removing a whitespace or punctuation character, the remaining 
queries are the same or the remaining second query is a whites-
pace and punctuation reformulation of the second query. 
Example: wal mart, tomatoprices  walmart tomato prices 

  REFORMULATION 3.  REMOVE WORDS 
A remove words reformulation is when any number of words is 
removed from the first query resulting in the same words in both 
queries. This reformulation neglects word order. 

Present Study  Anick [3]  Teevan [34] 
Jansen [16], He 
[15], Lau [24] 

Whittle [36]  Bruza [7]  Guo [13] 

word reorder  syntactic variant  word order         

whitespace and 
punctuation 

 
non‐alphanumerics, word 
merge 

    SPL, PUN 
word splitting, 
word merging 

remove words    remove words / duplicates  generalization  D(k)  DEL   

add words  head, modifier  add words, add stopwords  specialization  C(k)  ADD   

url stripping    domain         

stemming  morphological variant  stemming and pluralization   M(k)  DER  word stemming 

acronym1  acronym  abbreviations      ABR  expansion 

substring2             

abbreviation             

word substitution 
alternative, hyponym, 
change 

word swaps, synonyms  reformulation  W(k), w(k)  SUB   

spelling correction  spelling  misspellings    M(k)  SPE  spelling correction 

* not detected  elaboration, location  reformulation    S(k), s(k)     

* not in data   
capitalization, extra 
whitespace 

  J(k)  CAS   

Table 1: Mapping between taxonomies of query reformulation in search logs 
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Words are recursively removed from the first query until it is a 
word reorder or equal to the second query. The first and second 
conditions are base cases where either the two queries are equal or 
a word reorder. The third condition removes words along with the 
surrounding spaces from the first query and replaces them with 
spaces. Spaces are temporarily added to the left and right of the 
query to account for the leftmost and rightmost words. 
Example: yahoo stock price  price yahoo 

  REFORMULATION 4.  ADD WORDS 
An add words reformulation occurs when one or more words are 
added to the first query. This reformulation applies even if words 
are reordered in the second query. It is easily defined as the 
reverse transformation of remove words, 

abba zzzz ⎯→⎯⎯→⎯ RWAW  iff  
Example: eastlake home  eastlake home price index 

  REFORMULATION 5.  URL STRIPPING 
Users often append components from a URL into the query, 
mistaking the search box with their browser’s address bar. When 
they realize this, they will strip these strings from their query. 
This also happens in reverse, where the user copies the target 
URL into the search box after searching. A url stripping reformu-
lation occurs when the first and second queries are the same after 
removing “.com”, “www.”, and “http” from both sides. 
Let { }.com,www.,http_,_http=Ω , 
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This rule applies if there is some permutation of removing URL 
components from both queries that makes them the same. 
Example: http www.yahoo.com  yahoo 

  REFORMULATION 6.  STEMMING 
A stemming reformulation involves changing the word stems in 
the first query. The rule stems every word in both queries using 
Porter’s stemming algorithm [30] and compares them. 
Let )(wP  be the stem of the word w, 

( ))()( if

____
11

Stem

ii

nini

ba

bbbaaa

wPwPi

wwwwww

=∀

⎯⎯→⎯ KKKK
 

Example: running over bridges  run over bridge 

  REFORMULATION 7.  FORM ACRONYM 
A form acronym transformation occurs when the second query is 
an acronym formed from the first query’s words. 

ninnii cccwcwcwc KKKK 1
FA

11 __ ⎯→⎯  
Example: personal computer  pc 

  REFORMULATION 8.  EXPAND ACRONYM 
An expand acronym transformation occurs when the first query is 
an acronym and the reformulation is a query consisting of the 
words that form the acronym. 

nniini wcwcwcccc __11
EA

1 KKKK ⎯→⎯  
Example: pda  personal digital assistant 

  REFORMULATION 9.  SUBSTRING 
A substring is defined as an instance where the second query is a 
strict prefix or suffix of the first query. Unlike the traditional 
definition of substring, this does not include instances where only 
inside characters of the first query are extracted. 

baba zzzz |Sub⎯⎯→⎯  
Example: is there spyware on my computer  is there spywa 

  REFORMULATION 10.  SUPERSTRING 
A superstring is defined as an instance where the second query 
contains the first query as a prefix or suffix. 

xaaxa zzzzz |Super⎯⎯ →⎯  
Example: nevada police rec  nevada police records 2008 

  REFORMULATION 11.  ABBREVIATION 
An abbreviation reformulation is when corresponding words from 
the first and second queries are prefixes of each other. This differs 
from substring which considers suffixes and only compares the 
entire queries.  

( )cbabca

bbbaaa

wwwwwwi

wwwwww

iiii

nini

=∨=∀

⎯⎯→⎯

 if

____
11

Abbr KKKK
 

Example: shortened dict  short dictionary 

  REFORMULATION 12.  WORD SUBSTITUTION 
A word substitution occurs when one or more words in the first 
query are substituted with semantically related words, determined 
from the Wordnet database [10]. Two words are related if one is a 
semantic relation (synonym, hyponym, hypernym, meronym, or 
holonym) of the other after both are converted to their base 
morphological form. This rule is implemented in two steps. First, 
if the queries in their entirety are related, they are considered a 
word substitution; this detects substitutions of the entire query. 
Second, if every corresponding pair of words is the same or 
related, this is also a word substitution. 

Let the ≈ operator represent a semantic relation between two 
words, including the case when the words are the same. 

ba zz ⎯⎯→⎯WS  

 
ni aaaa wwwz __

1
KK=  

 
ni bbbb wwwz __

1
KK=  

 ( ) baba zzwwi
ii

≈∨≈∀ if  

Synonym:  The two words have the exact same meaning. 
Example: easter egg search  easter egg hunt 

Hyponym: The first word is a specific instance of the second 
word. These are also referred as broad terms. 
Example: crimson scarf  red scarf 



Hypernym: The second word is a specific instance of the first 
word. These are also referred as narrow terms. 
Example: personal computer  laptop 

Meronym: The first word is a constituent part of the second word. 
Example: finger  hand 

Holonym: The second word is a constituent part of the first word. 
Example: automobile  wheel 

  REFORMULATION 13.  SPELLING CORRECTION 
A spelling correction is detected using a conservative Levenshtein 
edit distance function [25]. This function maps well to a spelling 
correction a user would typically make, because it tracks the 
number of character edits between two queries. The queries are 
classified as a spelling correction reformulation if the Levenshtein 
distance is 2 or less. A threshold of 2 matches character swaps and 
missing characters. 
In the expression below, ),( ba zzL  is the Levenshtein edit distance 
between strings za and zb, 

2),( if SC ≤⎯→⎯ baba zzLzz  
Example: reformualtion  reformulation 

3.2 Undetected Reformulations 
There are a few categories of reformulations which are not 
included in our taxonomy. They are difficult for our classifier to 
detect, and may even be difficult for a human to detect. We 
randomly sampled 200 of the 962 missed reformulations from our 
evaluation data to get a general sense of which reformulations our 
classifier missed. Three types of missed reformulations emerged, 
described in the next three subsections and quantified in Table 2. 

3.2.1 Semantic Rephrasing 
Humans can rephrase their queries in complex ways. Many 
rephrasings are difficult for even a smart algorithm to detect, 
requiring sophisticated semantic association at minimum. Context 
or pop culture knowledge may be needed. 
Example: easy raspberry mousse  cool whip mousse 
Example: how to calculate nutritional values  weight watchers calculator 

3.2.2 Multi-Reformulations 
Users often perform more than a single reformulation strategy. 
For example, they may correct spelling and replace one word with 
a synonym. While a classifier can theoretically try combinations 
of reformulation strategies, this is difficult or even impossible 
because reformulation strategies do not have a commutative 
property. In other words, a different ordering of strategies gives 
different results. For example, trying to detect spelling corrections 
after stemming will yield different results than doing so before 
stemming. Additionally, many reformulations obviously cannot be 
combined, such as word reorder and acronym. Add words and 
remove words together were not considered a multi-reformulation 
since any query can be transformed to any other query. The most 
common combinations of reformulations in our sample were add 
words & spelling correction, remove words & spelling correction, 
url stripping & whitespace and punctuation. Exploring the 
challenge of multi-reformulations is planned as future work. 

The following example demonstrates a multi-reformulation 
involving two reformulations: add words and spelling correction. 
Example: lane county gabrage  lane county garbage disposal 

3.2.3 Classifier Rule Limitations 
Some instances of reformulation strategies were insufficiently 
matched by a classifier rule. However, fixing the rules to detect 
these reformulations would have introduced new complications. 

Our rule for detecting spelling correction used a Levenshtein edit 
distance of 2. While this achieved high precision, the rule missed 
spelling correction involving three or more character edits. For 
example, “ametuer” changed to “amateur”. This is an example of 
the classic trade-off between precision and recall. We chose a 
lower threshold to optimize for a high precision classifier. 

Word substitutions are dependent on the Wordnet database. 
Substitutions absent from the database cannot be detected by our 
classifier. This limitation will likely be solved over time. 

Our rule for url stripping currently only removes the .com top-
level domain from the query. Some queries involve other top-level 
domains or second-level domains which are not stripped. The list 
of top-level domains is not constant and there are an infinite 
number of second-level domains so capturing these reformula-
tions requires a more sophisticated rule. 

The abbreviation detection rule only checked for a substring 
prefix for each word. There are cases in the English language 
where an abbreviation is not a substring prefix such as ‘dept’ for 
‘department’.  

Table 2: Missed reformulations in sample evaluation data 

Undetected Reformulation  Occurrences 

1. Semantic Rephrasing  108
2. Multi‐Reformulations  60 

 2‐reformulations  46 
 3‐reformulations  14 

3. Classifier Rule Limitations  32 
 spelling correction  15 
 word substitution  11 
 url stripping  3 
 acronym  2 
 abbreviation  1 

Total 200

4. THE RULE-BASED CLASSIFIER 
Classifiers commonly learn from a set of training data, which we 
refer to as machine learning classifiers. We developed a rule-
based classifier instead of a machine learning classifier because 
our query reformulation strategies fit a procedural rule model 
better than a learning model. No prior work has developed a 
machine learning classifier that distinguishes different query 
reformulation strategies. Furthermore, using a rule-based 
classifier allowed us to make detailed adjustments to our classifier 
for special cases. An implementation of the classifier is freely 
available to the research community3. 

                                                                 
3 Source code: http://jeffhuang.com/reformulationClassifier.py 



The classifier reads the query log starting from the top and 
compares pairs of consecutive queries (za, zb) from the same user. 
The first query in the pair za is the initial query and the second 
query zb is potentially a reformulated query. The query pairs are 
matched against the ordered reformulation rules defined in 
Section 3.1. If there is a match, the second query is classified as a 
reformulation of the first query. Figure 1 shows the flow of 
queries into the classifier and segmented into query types. Using 
the notation zn as the nth query in the query log example from 
Figure 1, we can see that (z1, z2), (z2, z3), and (z5, z6) are classified 
but not (z3, z4) or (z4, z5) because z4 was from a different user. 

user1, query string1, timestamp, rank, url
user1, query string2, timestamp, rank, url
user1, query string3, timestamp, rank, url
user2, query string1, timestamp, rank, url
user3, query string1, timestamp, rank, url
user3, query string2, timestamp, rank, url

Query Logs

Classifier

New Queries

Same Queries

Reformulation

Acronym

Stemming

etc...

 
Figure 1: Diagram of the queries and classifier 

4.1 Precision vs. Recall 
Accuracy is the percentage of query pairs correctly detected as a 
reformulation. Existing measures of accuracy in most query 
reformulation research do not differentiate between precision, the 
percentage of query reformulations identified that are actually 
reformulations, and recall, the percentage of query reformulations 
identified. Our goal is to create a rule-based classifier with high 
precision, but not necessarily high recall. We deemphasize recall 
because we are studying the properties within each reformulation 
rather than between each reformulation. In other words, we are 
interested in inter-reformulation, rather than intra-reformulation, 
comparisons. For example, the proportion of URL clicks within 
each reformulation helps us understand the reformulations better 
than comparing the absolute counts of URL clicks between each 
reformulation. The magnitude of query logs provides sufficient 
events, so the analysis will still be generalizable and compelling 
even with lower recall. 

We manually classified every query from 100 users in the AOL 
query logs for evaluation. Essentially, this was a session boundary 
detection task. In total, there were 9,091 query pairs where we 
determined whether the second query was a reformulation of the 
first. Same queries were removed (40.8% of queries), to avoid 
inflating classifier performance because they can be detected 
trivially. Of these pairs, we found 2,483 reformulations and 6,608 
new queries, or 27.3% reformulations. This is very close to the 
28% reformulations reported for this dataset [29]. 

Our classifier was evaluated on this test data, marking the second 
query of each query pair as a reformulation if the query pair 
matched a reformulation strategy. Table 3 presents the results, 
comparing our classifier with machine learning classifiers. 

Table 3: Precision, recall, and accuracy measures  
for session boundary detection studies 

 Precision  Recall  Accuracy 

Present Study 98.2% 61.3% 89.1% 

He [15] 60%4 98%  

Jones [22]   87.3% 

Murray [27] 97.3%4  76%  

Radlinski [31] 96.5%4   92.3% 

Our focus on precision rather than recall resulted in 98.2% 
precision which is 38% higher than reported in He et al and 
slightly higher than Radlinski and Joachim’s 96.5%. Note that 
each study used a different set of query logs, so results can not be 
directly compared. Certain query logs are easier to classify than 
others because of the nature of the search engine and their users. 

Looking closer at the 1.8% (28 actual) queries that our classifier 
incorrectly determined to be a reformulation, we only found one 
case that was a true mistake. The other 27 were difficult to judge 
and debatable whether these were reformulations or not (see 
Section 5.3.3 for discussion). Therefore, we propose that our 
precision is even better than the 98.2% reported. 

5. RESULTS 
Our results are extracted from the AOL query logs, which were 
released on August 3, 2006 [29]. The logs contain 36,389,567 
queries from which our classifier identified 16,069,421 new 
queries, 14,861,326 same queries, and 3,411,706 reformulations. 
Each line in the logs contains five fields: the query string, 
timestamp, the rank of the item selected (if any), the domain 
portion of the selected item’s URL path (if any), and a unique 
identifier for each user. 

5.1 Reformulation Effectiveness Metrics 
We use effectiveness metrics to infer the quality of search results. 
Past studies found that clickthrough data and time spent predicted 
users’ satisfaction with the results [12]. Whether users clicked 
during the initial query and the reformulated query, which we call 
a click pattern, can be a predictor of search relevance [20]. We 
apply metrics learned from previous research to study the 
effectiveness of different reformulation strategies. These metrics 
are mostly based on click behavior and help show the usage 
pattern and effectiveness of specific reformulations. In our 
analysis, we also included new and same queries for comparison. 
Some reformulations are misidentified as new queries due to our 
classifier’s lower recall, but identifying new queries has no effect 
on our study of reformulated queries. Differences between 
reformulation strategies were all statistically significant, due to 
the large number of events in our dataset. 

5.1.1 Click Pattern 
A reformulation is composed of an initial query followed by a 
reformulated query. For each query, the user can decide to click or 
not click (skip) a result, creating 2×2=4 possible click patterns, 
presented in Table 4.  

                                                                 
4 Same queries, which inflate precision, may have been included 



Table 4: Click patterns for queries and their reformulation 

 Searcher Actions on Results 

Initial Query Click Skip 

Reformulation Click Skip Click Skip 

 
A click pattern of Skip followed by Click (SkipClick) means the 
user did not click any result from their initial query, then 
reformulated their query and clicked a result. This is an indicator 
that the user found the query reformulation to be effective. A 
Click followed by a Skip (ClickSkip) suggests that the reformula-
tion did not help [20]. Similarly, two consecutive Clicks can be 
taken as successful searches, while two consecutive Skips as 
failed searches. Over all queries in the query logs, the ratio of 
clicks to skips was approximately 5:4. 

Figure 2 shows the proportions of the click patterns for each type 
of reformulation. A chi-squared analysis verifies that the query 
reformulation type has a statistically significant effect on click 
pattern χ2

(42, N=34,342,453) = 6,117,864.37, p < .001. 

The results show that different reformulation strategies have 
significantly different proportions of Clicks vs. Skips in the initial 
query. We can see this by looking at the ratios of SkipSkip + 
SkipClick to ClickClick + ClickSkip. Spelling correction, expand 
acronym, and superstring have high ratios, meaning people 
attempt these reformulations when they are unsatisfied with their 
initial query, perhaps due to a misspelled query or ambiguous 
acronym. In contrast, form acronym, remove words, word reorder, 
and word substitution have lower ratios, indicating the initial 
results may be somewhat relevant and users are further refining 
their query. Same queries have the lowest ratio as expected since 
users are unlikely to repeat a search using the same query if the 
initial results were unsatisfying; in fact, same queries usually have 
ClickClick patterns probably because they are re-finding queries 
[35]. These proportions are consistent with our current under-
standing of users. 

Comparing the proportions of Clicks vs. Skips in the reformulated 
query gives insight to whether the reformulation was helpful. 
Looking at the SkipSkip + ClickSkip to SkipClick + ClickClick 
ratios, we can see that reformulation results were clicked about as 
often as new queries. This is a positive indicator for reformula-
tions because it suggests users are as successful with reformula-
tions as with new searches. The substring and superstring 
reformulations were least helpful, possibly because many of those 
reformulations were mistakes by users. Add words, word 
substitution, stemming, spelling correction, and expand acronym 
were most helpful under this comparison. 

We can also compare the proportions of Clicks vs. Skips in the 
reformulated query given a specific action in the initial query. We 
control the action variable in the initial query and regard the 
action in the reformulated query as the dependent variable. For 
example, we compare the ratio of SkipSkip to SkipClick to see 
whether a user is more likely to click if the initial action is Skip. 
Same queries behave as expected: if the initial query was Skip, 
the user is significantly more likely to skip the second query as 
well; if the initial query caused a click, the user is about 10× more 
likely to click than skip after searching with the same query. 
When the initial query causes a Skip, the spelling correction, 
expand acronym, and add words reformulations have the highest 

likelihood that the user will click. Likely explanations are that 
spelling correction and expand acronym fix incorrect queries and 
disambiguate acronyms, while add words narrows the search to 
make the results more relevant. In contrast, superstring, url 
stripping, and substring are least likely to help when the initial 
query results in a Skip. Different reformulations are effective 
when looking at initial queries that result in a Click. Word 
substitutions, word reorder, and add words are the three most 
helpful reformulations in this condition. When a search provides 
relevant queries, users that substitute words for related words, 
reorder their words, and add new words get better follow-up 
results. On the other hand, substring, superstring, abbreviation, 
and spelling correction are not useful when the initial query 
results in a Click. This is interesting because spelling correction is 
one of the most helpful reformulations when the initial action is 
Skip, but one of the least helpful reformulations when the initial 
action is Click. 
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Figure 2: Proportions of Click Patterns used for each 

Reformulation Type 
 
The next two metrics, Click URL and Rank Change of Clicked 
Results, only apply in the case of a ClickClick pattern because 
rank and URL from corresponding clicks are used in the analysis. 

5.1.2 Click URL 
Users may be re-finding rather than reformulating queries to 
retrieve better results. This can be observed by checking if the 
URL is the same between queries. We hypothesize that users click 
on the same URL in same queries (re-finding). There are some 
limitations to the analysis because the URLs in the AOL logs are 
truncated at the domain level for privacy.  

Figure 3 shows the proportions of clicked URLs which were the 
same for each reformulation type. A chi-squared analysis shows 
that reformulation type has a statistically significant effect on this 
metric χ2

(28, N=34,342,453) = 5,394,409.56, p < .001. The number of 
new queries which resulted in the same URL is small as expected. 
The same URLs were often selected before and after url stripping 
from the query—this is also obviously expected. Users substitut-



ing related words in their query, i.e. word substitution, seemed to 
select different results. The marked difference between forming 
and expanding acronyms may be because users form acronyms to 
return to the same URL and are simply using a shortcut query, 
while users expand acronyms to look for new results, perhaps to 
disambiguate a common acronym. Also notable is that spelling 
correction caused few same URL clicks, suggesting that the 
correction helped fetch new, improved results. 
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Figure 3: Proportions of URLs Clicked which were the Same 

vs. Different for each Reformulation Type 

5.1.3 Rank Change of Clicked Results 
A rank change is the difference between the rank of the result 
clicked in the initial query subtracted from the rank of the result 
clicked in the reformulated query. Successful reformulations 
should have a positive effect on rank change. 

Table 5 shows that all reformulations have positively affected the 
rank of the selected result. The rank change is positive if the user 
clicked a higher ranked result in the query reformulation. The 
most positive rank changes occurred with the reformulation types 
word substitution and add / remove words. Url stripping, changing 
whitespace and punctuation, and forming acronyms resulted in a 
small positive rank change. We suspect url stripping only had a 
small rank change effect because most clicks were for the same 
URL (see Section 5.1.2) which would likely have the same or 
similar rank. Calculated rank changes were found to be signifi-
cantly different (F14,34342438 = 116,670.58,  p < 0.001). 

5.1.4 Median Time between Queries 
This metric measures how quickly users performed each type of 
reformulation. The average time was computed for each 
reformulation strategy. Our results in Table 5 show that complex 
reformulations such as word substitutions and forming acronyms 
took users longer than simple ones like spelling correction. 
Surprisingly, the median time for same query was 1 second; this 
suggests that some same queries may be made by computers 
rather than humans. As expected, new queries took the longest 
time since they are often part of different query sessions. 
Calculated times were found to be significantly different 
according to an ANOVA (F14,13813144 = 48,235.05,  p < 0.001). 

Table 5: The median time (in seconds) between queries and 
mean rank change for each reformulation 

Reformulation Type  Median Time (s) 
between Queries 

Mean Rank 
Change 

word substitution 73 +4.04 
add words 63 +3.19 
substring 33 +3.15 
remove words 68 +3.02 
word reorder 85 +2.86 
expand acronym 42 +2.02 
stemming 33 +2.00 
new 2,417 +1.91 
abbreviation 35 +1.39 
superstring 53 +1.10 
spelling correction 22 +1.03 
form acronym 103 +.64 
whitespace & punctuation 27 +.54 
url stripping 57 +.29 
same 1 ‐1.83 
 

5.2 Discussion 
Most findings were consistent with our expectations, evidence 
that the general approach of analyzing effectiveness metrics of 
reformulation strategies is useful. A surprising finding was that 
different reformulation strategies were effective depending on the 
action from the initial query. This emerged when comparing the 
ratios of actions in a reformulated query while controlling for the 
initial action. Word substitution reformulations were more likely 
to result in a Skip than a Click when the initial action was Skip, 
but result in Click 3× as often as Skip when the initial action is a 
Click. This is supported by metrics that show word substitution is 
correlated with different URL clicks as well as higher ranked 
clicks, suggesting that the user is interested in related but better 
results. In contrast, spelling correction is one of the least effective 
reformulations when the initial action is a Click, but becomes one 
of the most effective reformulations when the initial action is a 
Skip. This demonstrates the prior action needs to be considered 
when determining the effectiveness of reformulation strategies. 

5.3 Limitations 
5.3.1 Lack of Context 
Grimes et al. [14] note that while a vast amount of information 
can be discovered from aggregating data, query logs are the least 
rich source of data for individual events. Query logs only show 
the recorded actions and not the intent behind the queries. 
Identifying the user intent can be difficult or impossible without 
context, which is absent from logs. For example, query logs 
cannot tell whether a user did not click because the information 
they were looking for was found on the results page, or because 
the results were unsatisfying. Complementing this research with 
survey and user studies could address the lack of context. 

5.3.2 Normalized Query Logs 
The AOL query logs were released with normalized data, which 
may skew the results. Some queries were removed or modified for 
privacy reasons. The paths in the click URLs were stripped 
leaving only the domains. Lastly, all queries were lowercased and 
most punctuation was removed, preventing us from detecting 
when the user performed a capitalization query reformulation. 



5.3.3 Ambiguous Queries 
Baeza-Yates et al. [5] note that even humans have difficulty 
manually classifying some queries and the subjectivity involved 
can lead to errors. When manually separating query sessions, we 
encountered queries where it was ambiguous whether they were a 
reformulation. Queries can be related, but whether they fit the 
definition of a reformulation, ‘as part of the same information 
need’, may still be unclear. If a human cannot accurately classify 
a query, a computer programmed by a human, subject to their 
limitations, will not be more successful. An example is a first 
query ‘american airlines’ and a second query ‘delta airlines’; 
would they be considered part of the same information need? The 
intent behind the queries could be different (e.g. the user wants to 
find information about each airline), or part of the same informa-
tion need (e.g. comparing prices between the airlines). 

5.3.4 Search Engine Effects 
The findings in this paper are influenced by the AOL search 
engine’s implementation. Studying a different search engine’s 
query logs may affect the reformulations used because of the 
different results displayed or the way it handles queries. A 
reformulation may work better for a different search engine. For 
example, users may learn over time not to reorder words in their 
query if they find it is ineffective due to the search engine’s 
ignoring of word order. During the period when these logs were 
collected, AOL Search returned results from Google [Chowdhury, 
personal communication] and query suggestions were offered for 
some queries. Despite these effects, the results here are uncom-
promised because we study inter-reformulation rather than intra-
reformulation effectiveness metrics. 

6. APPLICATIONS 
6.1 Interfaces Supporting Reformulation 
Current search engines have integrated automatically generated 
query reformulation suggestions into their interface. However, 
they do not distinguish between new and reformulated queries. 
Users often perform a query reformulation because they are 
dissatisfied with the results from their initial query. One possible 
interface change would be displaying differently the overlapping 
search results between the reformulated search and the initial 
search. For example, when a user searches for ‘laptop’ and then 
‘widescreen laptop’, the search engine can gray out the results in 
the second query that were also presented in the ‘laptop’ query 
because it knows the user was not interested in those results. A 
related interface has been already built into web browsers since 
their inception—visited links turn purple while unvisited links are 
blue, which helps users avoid selecting results already visited. 

Email applications show the conversational history between 
recipients which reminds them of past discussion. We suspect that 
query session history is not shown in search pages because 
existing reformulation detection methods are error prone. 
However, with our high precision classifier, many previous 
queries can be determined with confidence. While we may miss 
some previous queries, that is less crucial in this application. 
Showing query history fits the need of a high precision, low recall 
classifier. We can design and evaluate a search interface that 
shows a user’s query history when the user is in a query session, 
i.e., performing a query reformulation. It may help the user to see 
prior queries while they are reformulating. 

6.2 Query Session Boundary Detection 
Anick [3] notes that query reformulations exist in 56% of 
sessions; while Pass et al. [29] find the typical session contains 
2.6 reformulations on average. A classifier like ours that identifies 
query reformulations solves the same problem as classifiers that 
identify query session boundaries (see Section 2.2 for discussion). 
Generally, when orthogonal classifiers are combined, the result is 
one that is better than either of its components. Since our 
classifier is rule-based, operating orthogonally to existing 
classifiers, it can theoretically be combined with an existing 
temporal or machine learning classifier. This will produce a 
reliable overall classifier for detecting session boundaries.  

6.3 Intelligent Query Assistance 
Understanding how users are reformulating queries and their 
effectiveness can help search engines provide better automatic 
query assistance. For example, a search engine should propose 
different reformulation strategies depending on the user’s action 
after a query. Our findings have shown that expanding acronyms 
and spelling corrections are helpful reformulations when a user 
does not click on any result, but word substitutions and query 
expansion are more helpful when a user has clicked.  

6.4 Personalized Search 
Reformulation strategies also greatly vary between users. Search 
engines can react differently depending on the user performing 
the search. A search engine that has a history of a user’s queries 
will be able to offer query assistance suited for that user, or offer 
helpful suggestions about how the user can improve their 
searching and reformulating. For example, the search engine can 
suggest stemmed queries to a user who would benefit from 
stemming reformulation, or it might display a message like “We 
noticed you have been using future tenses in your searches, we 
suggest changing to present tense for better results.” 

7. CONCLUSIONS 
This paper describes the human side of query reformulation and 
contributes to our understanding of users in search interaction. We 
created a taxonomy of query reformulation strategies, built a high 
precision rule-based classifier to detect each type of reformula-
tion, and analyzed query reformulations in the AOL query logs 
using metrics which are indicators of effectiveness. We found that 
different reformulation strategies have distinct characteristics 
when studied through the lens of click data. Certain reformula-
tions like add/remove words, word substitution, acronym 
expansion, and spelling correction seem most effective. On the 
other hand, acronym formation and reordering words may be less 
beneficial to the user. We discovered that different reformulation 
strategies are useful depending on the user’s behavior in response 
to the initial set of results. These findings benefit research in 
query session boundary detection, improve query assistance and 
personalized search, and propose design implications for user 
interfaces supporting reformulation. 
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