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ABSTRACT
Panand zoomtimelines and sliders helpusnavigate large time

series data. However, designing efficient interactions can be

difficult. We study pan and zoommethods via crowd-sourced

experiments on mobile and computer devices, asking which

designs and interactions provide faster target acquisition. We

find that visual context should be limited for low-distance

navigation, but added for far-distance navigation; that time-

lines should be oriented along the longer axis, especially on

mobile; and that, as compared to default techniques, double
click, hold, and rub zoom appear to scale worse with task diffi-

culty, whereas brush and especially ortho zoom seem to scale

better. Software and data used in this research are available

as open source.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in
visualization; Empirical studies in interaction design.
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1 INTRODUCTION
Pan and zoom interactions allow us to explore multi-scale

timeline data with 10
6+

spans on fixed-size displays [8]. As

large-span datasets increase in prevalence, visualization cre-

ators will increasingly ask how best to maximize usability

in their applications. Navigation efficiency is integral to us-

ability: it can be dramatically affected by timeline design and

interaction technique; being able to turn an interface fromone

that frustrates users to one that supports their goals. Brehmer

et al. recently reviewed timeline appearance, and identified

many different layouts, shapes, and scale types [5]. However,

little is known about the effectiveness of these timeline de-

signs for multi-scale navigation across the many options for

pan and zoom interaction techniques. To provide timeline

creators with useful guidance, studies must be run which are

applicable to the Web—a highly uncontrolled environment

accessed through a multitude of devices.

We present a systematic study of multi-scale timeline and

interaction designs in an experiment with 318 participants

acrossmobile and desktop devices. With this study, we an-

swer the following three questions:

Q1: Doparticipantsnavigateadate-basedtimelinefaster
than a pure numberline?We find that visual context

from dates can be helpful for far-distance navigation, but

decreases short-distance navigation speed.

Q2: Doparticipantsnavigatetimelinesfasterwithahor-
izontal or a vertical layout? We find that orienting

timelines along the longer axis of devices improves nav-

igation efficiency, and an orientation which maps intu-

itively to hardware also improves performance, e.g., scroll
wheel pan is faster vertically than horizontally.

Q3: From a set of eight different pan and zoom interac-
tion pairings from the literature, which is fastest
for timelines?We find the default pinch zoom on mo-

bile and scrollwheel zoomoncomputer are fastest overall,

as might be expected. We find that the pan technique is

important for overall navigation speed, and that com-

pared to default techniques, 2x click, hold, and rub zoom
seem to scaleworsewith task difficulty. In contrast, brush
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and especially ortho zoom seem to scale better than de-

fault techniques. Given users’ unfamiliarity with these

techniques, this is a strong indicator that brush and espe-

cially ortho zoommay outperform the default technique

with more practice, especially for high task difficulties.

We interpret our study outcomes and discuss their impact

on multi-scale timeline design. In our supplemental material,

we review 10 different pan and zoommethods considered for

the study, including a matrix of method compatibility and all

parameters used. To maximize reproducibility, we publish all

technique implementations as open source software.

2 RELATEDWORK
Muchwork addressesmulti-scale navigation, e.g., space-scale

diagrams [12], map visualization choice [18], smooth anima-

tion [39], visual aids for multi-scale navigation [9, 34, 40],

and topology-based interaction techniques [21]. We focus on

timelines and general-purpose interaction techniques.

Timeline Visualization
Timelines are an essential and historic visual encoding of

events in chronological order and a basic building block of

many visualizations [33, 36]. Brehmer et al. review the de-

sign space of timeline shapes (e.g., linear, radial, grid), scales

(e.g., chronological, relative, logarithmic) and layouts (e.g.,

unified, faceted, segmented) [5]. This helps us comprehend

visual choices, but little is known about the consequences of

these choices: which is easiest to understand or to interact

with. While Brehmer et al. published an evaluation of un-

derstandability of two timeline designs [6], performance in

most of the design space is still unknown. In particular, no

study reports the influence of interaction on design, which

is a critical component of any multi-scale timeline.

We contribute an evaluation of two timeline design ques-

tions about visual context and timeline orientation, and so

provide design recommendations from our navigation study.

Multi-scale Interaction
Existing Interactions: A large body of work exists on inter-

action techniques for pan and zoom inmulti-scale spaces, and

new techniques are frequently proposed. Early multi-scale or

zoomable interfaces, such as Pad, Pad++, andMuSE [4, 13, 32]

defined zoom based on holding a mouse button down or drag-

ging a slider. The interaction design space has been explored

through brush or marquee zoom, anchor or ortho zoom [1, 2],

pinch to zoom [24], elastic interaction for precise manipu-

lation [28], pan-speed-dependent zooming [19], flick pan or

zoom [35], and cyclic gestures based on rubbing [31] or cir-

cles [27]. Moving beyond 2D pointing devices, the literature

exploresmid-air gestures [30],Webcam-based zooms fordesk-

top [16] andmobile [22], plus mobile-specific tilt sensors [17]

and camera-based device spatial positioning [38]. This dense

network of techniques is difficult to grasp.

New Interactions: When new interaction techniques are

proposed, they are typically compared against only a few re-

lated techniques. Thismakes it difficult to gain an overview of

technique performance across the field. Further, these are of-

ten implemented in isolation and closed source, which makes

reproduction and comparison difficult, with researchers even

going so far as to reverse engineer interaction techniques to

understand theirmechanics [35].This is also trueofparameter

selection, which can be critical to performance.

We contribute 32 open-source implementations to aid re-

producibility, and provide a systematic evaluation of seven

of these combined techniques (Figure 2).

Motor Control Theory: Design and technique compar-

isons are possible thanks to human motor control theory [3].

Guiard and Beaudouin-Lafon empirically showed that Fitts’

Law [11, 26] can apply to multi-scale pointing [15]. Across in-

dices of difficulty (ID) from5–30 bits, target pointingmeasure-

ment timeT varied linearly with target ID, or logarithmically

with target distance, with performance variation represented

by the slope of the line. This models different multi-scale in-

teraction technique performance, where intercept and slope

parameters a and b vary per technique:

T =a+b ·ID=a+b ·log
2

(
Distance

Target Size

+1
)

(1)

We observe that Fitts’ lawholds for our data obtained in the

wild, which helps us compare visualization and interaction

techniques for this uncontrolled environment.

Guiard and Beaudouin-Lafon continue to describe how the

user must decide how to use the pan, zoom in, and zoom out

functions duringmulti-scale interaction. Below ~8 bit IDs, the

usermay pan only, but high-bit ID targets require 10+ seconds

of interaction with a combination of zoom out, zoom in, and

pan [15]. Interaction time is affected by timeline appearance,

as the user must orient the data view to their mental map of

the data, e.g., higher cognitive load can increase ‘idle’ time.

Both the interaction difficulty and the human data process-

ing can cause ‘desert fog’ [23], where a user becomes lost in

multi-scale space, e.g., by zooming in to an incorrect target.

Summary
Little guidance exists for multi-scale timeline visualization

and interaction design, in part because technique details are

not available and so systematic and reproducible pan and

zoom evaluation is difficult. To address this, we implement

and evaluatemultiple timeline designs and interactions to pro-

vide actionable design recommendations to timeline creators,

and open source our software and data.
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Figure 1: The study setup as seen by participants: Pinch zooming (left) and brush zooming (right) on a horizontal timeline. Top:
Timeline as seen when zoomed out. Bottom: Timeline as seen when zoomed in all the way to a time span of fourminutes.

2x Click Brush Ortho Hold RubWheelPinch

Default
Zoom In

Technique

Alternative
Zoom In

Technique

Figure 2: Schematic overview of zoom in interactions used
in this study. Ortho zoom is dragging perpendicularly to the
axis of the timeline, rub zoom is dragging back and forth.

3 OPEN-SOURCING INTERACTION TECHNIQUES
To enable systematic and fair evaluation of techniques, we

implemented 32 pan and zoom techniques, including varia-

tions, and contributed them to EasyPZ [37], an open-source

pan and zoom JavaScript library which works across mobile

and desktop computers. EasyPZ enables easy use and tuning

of these techniques on any data visualization. Contribution of

these techniques to this open-source platform allows future

research and evaluations to build on this work.

Implemented Interactions
The implemented interactions are largely from existing liter-

ature, although some have received improvements from their

original design, such as a continuous zoom on rub zoom as

opposed to the original step-wise implementation.

We chose these techniques based on their popularity in ex-

isting software, availability in the literature, and compatibility

with both computers andmobile phones, and added some sim-

ple variations such as quadratic scaling to pinch zoom.

Pan: We implement default desktop dragging with a linear

transfer function (drag pan), default mobile dragging with

flick momentum (flick pan [35]), scroll wheel on a desktop

mouse or a scroll gesture on a touchpad (scroll pan), and using
the touchscreen with a two-finger motion (two-finger pan).

Zoom: The zoom techniques are shown in Figure 2. We

implement double click or tap (2x click zoom), holding down a

button or pressing a touchscreen without releasing the finger

(hold zoom [4, 32]), using the scroll wheel on a desktopmouse

or a scroll gesture on a touchpad (scroll zoom), two-finger

pinch to zoom (pinch zoom [24]), drag-selecting a rectangular

zoom region, often called marquee zoom or brushing (brush
zoom), dragging along the orthogonal axis for continuous

zoom granularity control (ortho zoom or dynamic zoom [1, 2]),

and the cyclic gesture of bi-directional rubbing to zoom in and

out (rub zoom [31]), e.g., where rubbing horizontally zooms

in and rubbing vertically zooms out.

Compatibility: Given a pointing device, only some in-

teraction combinations are compatible. This design space

includes parameters like zoom speed, minimum interaction

time, orpointer speedboundsduring thebeginningof an inter-

action. We tabulate these compatibilities in our supplemental

material as a reference to visualization creators.

4 USER STUDYDESIGNANDPROCEDURE
Next, we describe the experimental procedure, the gathered

data, the data analysis and results of the user study designed

for this task. We use 1D timelines as in Figure 1.

Motivation andDesign Rationale
In-the-wild Study: We wish to find practical insights into

which timeline visualizations and interactions perform best

given the wide range of screens and input devices in use, in

contrast towell-defined laboratory settingswhichmayormay

not be applicable in the real world, as online studies include

more user errors than lab data [10]. For this reason, our study

does not control user nor input devices, and is run instead as

an in situ study on AmazonMechanical Turk. This approach

conserves the unknown real-world variability which faces

Web application designers today.

Mobile Phones and Orientation: The growing use of

smart phones, and increased use of visualizations on mobile

phones, motivated us to find interaction design insights for

both laptops/PCs (called “computers” here), as well as mobile

smart phones (called “mobile” here, excluding tablets). Given

varying aspect ratios across different devices, we decided that

evaluation of impact of timeline orientation was essential.
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Table 1: Our four participant sets, their chosen fixed study settings and compared factor levels, and to which questions their
data were applied. Each Q1-3  and Q1-3§ symbolizes that the data was used for question 1-3 for mobile or desktop, and
represents one of six analysismodels. Each column is one set of≈40 people who all underwent the same conditions. For Q1 and
Q2, the study design is balanced, whereas for Q3 the study design is unbalanced.

Participant Set Participant Set 1 Participant Set 2 Participant Set 3 Participant Set 4
Question Q1: Representation Q2 & Q3: Orientation &Method Q3: Method Q3: Method

Representation (Varied) Dates Dates Dates

Orientation Horizontal (Varied) Vertical Vertical

Platform Mobile Computer Mobile Computer Mobile Computer Mobile Computer

# Participants 40 43 38 42 35 40 41 39

Orientation Setting: Horizontal

Dates Q1  Q1§
Numbers Q1  Q1§

Representation Setting: Dates, Orientation Setting: Horizontal

Default Q2  Q2§
Ortho Q2
Brush Q2§

Representation Setting: Dates, Orientation Setting: Vertical

Default Q2  Q3  Q2§ Q3§ Q3  Q3§ Q3  Q3§
Ortho Q2  Q3  Q3§
Hold Q3§ Q3
2x Click Q3§ Q3
Brush Q2§ Q3§ Q3
Rub Q3  Q3§

Simulated “Locate” Task: In a real pan and zoom time-

line navigation application, the target location is not precisely

knownina “locate” task (targetknown, locationunknown[7]).

If the target were known (“lookup”), then a text or other di-

rect input option would be more efficient for navigation than

navigating a timeline. To simulate a “locate” task, participants

were instructed to navigate to specific targets on the timeline

without visually showing the target location on the timeline.

This is a difference to traditional Fitts’ lawexperiments,where

targets are typically shown. We believe a design that visu-

ally displays the target on the timeline would simplify the

navigation task too much to be applicable to a locate task,
where maintaining context by visually parsing the scene is

important. This design accounts better for target acquisition

issues such as desert fog (see Section 2).
Number Challenges: In a pilot study with a numbers-

based pan and zoom timeline, we observed navigation diffi-

culties and errors among our participants: As the length of

the target numberswas very long—8 digits—pilot participants

commonly forgot the exact target number and struggled to

find it. As years, months, and dates provide a natural hierar-

chical grouping (e.g., Miller’s “magical number 7” memory

capacity maxim [29]), we hypothesized an increased recall

and improved target acquisition when using dates over num-

bers. This can be a visualization choice: application examples

include ‘friendly dates’ where recent events are described in

relative terms (“last week”) but distant events are absolute

(“Jan 2012”), and video editor time encoding as hours,minutes,

and seconds, or as absolute number of frames (e.g., Adobe Pre-

miere Pro). Thus, we study the effect of this additional context

on navigation speed. We chose a minimal timeline layout to

reduce the influence of any particular design, but balanced

this goal with the observation that far-distance navigation

can be difficult without visual context.

Tasks for Range of Difficulties: From pilot lab studies,

we concluded that method combinations may be more or less

suited for a task depending on the task difficulty. For example,

scroll wheel panning on a vertical timeline may allow to pan

quickly to nearby targets, but may not scale well for navi-

gating to far targets, depending on the paired technique for

zooming. Different applications have different typical naviga-

tion distances, such as subwaymaps typically not requiring

pan and zoom between targets very far apart, whereas navi-

gating a globalmap can involve pan and zoombetween points
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much farther apart. We decided in our study to cover a set of

tasks which show these different strengths so that applica-

tionswithaparticularneedcould choose themost appropriate

techniques. Since our target size was fixed, the task difficulty

is a function of only the target distance.

Procedure: Data Collection and Cleaning
Anoverview of the study design is presented in Table 1 and in-

cludes participant sets, compared factor levels, fixed settings,

and questions answered. Below, we describe the experiment

procedure, data collection, and data cleaning.

Participant Requirements: Participants were required
to be located in the United States, have a HIT Approval Rate

greater than or equal to 98%, and have more than 500 ap-

proved HITs. Participants were monetarily compensated for

their participation following approved IRB protocol.

Pay and Restrictions: Pay was fixed per task, which pro-
vided a soft incentive to perform the task quickly to increase

wage per hour. The average pay per hour was $8.24. Partici-

pants were allowed to participate once per study to minimize

learning effects of the methods. This included restricting par-

ticipants from taking the mobile version of a study after com-

pleting the computer version, and vice versa. As each study

had its own settings and methods, we did allow participants

to participate in multiple studies, e.g. they could participate

up to once per “participant set” in Table 1.

Participant Statistics: A total of 318 participants (225

unique) successfully completed the studies. Of those, 135

identified as female, 178 as male, 4 as other gender, and one

participant did not wish to disclose their gender. Participants

in our study ranged from age 18 to over 55, with the majority

of participants between the ages of 18–24 (147 participants).

More details about participants, such as average computer

use, are available in our supplemental material.

Study Process: Each study was split into a mobile and a

desktop version, and participants chose their input devices

freely. This reflects the study goal of real-world applicability,

as visualization creators can not practically force specific in-

put devices to be used. All participants were asked to perform

the study in the Chrome web browser for practical consid-

erations such as ensuring consistent appearance. Each par-

ticipant was informed of the duration, pay, procedure, and

goal of the study, informed of their rights, and asked for their

informed consent through our institution-approved IRB pro-

tocol. The order of the compared factors was randomized,

such as representation, orientation and technique. For each

compared factor, there was a short description of the current

timeline design and interaction method, plus free time to test

the interaction before the start of the experiment. Then, three

sets of task ‘runs’ proceeded: first, a test run with four multi-

scale pointing tasks in a random order (this data was not used

for analysis); then, two study runs one after the other, each

with the full set of eight multi-scale pointing task distances in

a random order. On average, participants spent about 8 min-

utes per experimental factor on desktop, and 13 minutes on

mobile. In total, participants took between 20 and 60 minutes

to complete the study, depending on whether they were in

participant set 1, 2, 3 or 4.

Task: In each trial, participantswere asked to find a known
target time/date on a pan and zoom timeline or number line.

To investigate performance over multi-scale data, we used a

linear number line spanning from zero to 20 million, which

corresponds to all times to theminute over a period of 38 years

for the timeline.With this number line, we asked participants

to navigate by 10, 20, 40, 100, 1,000, 100,000, and 5,000,000

numbers, or 10, 20, and 40 minutes, 1.66 and 16 hours, 69

days, and ~10 years on the timeline. These represent index of

difficulties of 3.3, 4.3, 5.3, 6.6, 10, 16.6, and 22.3 bits.

Study Design: The study design, with all data collected

separated by participant set, is presented in Table 1. It shows

which data was used for which of the three questions and

their respective models, which settings were fixed for each

participant set, and which factor was varied and compared.

As the goal of this study is not to compare visualizations and

interaction techniques on mobile versus desktop, but rather

examine them independently for each platform, we did not

compare methods across mobile/desktop in our analysis and

modeled them separately.Hence, our study design is set up for

one model per question and platform, resulting in six models

in total. Each of the six models is represented in the table as

Q1-3  and Q1-3§ .

Data Collection: For each task, completion times were

collected from the moment a participant started a task until

the target was found and selected by clicking. In addition,

data was collected about the user behavior during the task.

In particular, we detected whether users were zooming in,

zooming out, panning, or idling, and created a timeline for

each participants’ tasks. Some of this data is shown in the

Supplemental Material, along with graphs presenting which

type of interaction is prevalent for each distance.

Outlier Removal: Task times were only removed when

users were not paying attention: If a user was not navigating

for more than 10 seconds during a task, then we removed that

participant’s data for that task (task duration typically ranged

from 5–50 seconds). In total, this filtered out 7% of the data,

in line with other crowdsourced work (cf. 11% [14]).

Data Validation via Fitts’ Law
This predicts that task time for a pointing task will increase

logarithmically with target distance, or linearly with task

difficulty (Section 2). Figure 3 presents task times across all

studies and study factors in aggregate (representation, orien-

tation and method). Although there is some variation, we see
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Figure 3: All study data aggregated over all representations,
orientations, and methods, for computers (orange triangles)
andmobile (blue circles). For both platforms, the linear Fitts’
law relationship between task time and task difficulty is
visible. Error bars are not shown since this data does not
follow anormal distribution and is not used for our analysis.

a logarithmic trend of task time to target distance, or a linear

trend to task difficulty, on both platforms. The R2
scores for

computer and mobile are 0.983 and 0.972, respectively. While

not perfect, our data conform quite well to Fitts’ Law in this

highly uncontrolled environment, which helps validate this

type of real-world study.

Analysis Procedure
To test our hypotheses H1–3, we develop a model based on

Fitts’ law. This varies slightly from classical Fitts’ to consider

the challenges of an in-the-wild study, such as right-skewed

user performance distributions. To assess the strength of as-

sociations, we fit a linear mixed effects model which includes

task difficulty, compared factor level, and participant ID. The

model considers:

Fitt’sLaw: This [11] predicts task times to increase linearly

with the index of difficulty (denoted α ).
Comparisons: A change in timeline design or interaction

can cause a constant change in task time (denoted β), such as
extra needed time to orient independent of difficulty of task,

as well as a change in task time that scales with task difficulty

(denotedγ ), such as slower navigation. This corresponds to
a factor scaling differently with task difficulty compared to

the baseline:γ is the difference in slope in Fitts’ law.

Individual differences: We find that some participants

typically performed tasks faster than other participants, but

that there was no significant effect caused by some partici-

pants being particularly efficient with some specific methods

or tasks. We assume the participant as a random effect to be

Normally distributed and uncorrelated with the independent

variables such as task difficulty andmethod (denoted id). This

model is able to explain the variation in the data significantly

better than a linear model without random effect.

Log transformation: To test our hypotheses, the model

assumes task times to be Normally distributed. However, the

measured task times were heavily right-skewed. We apply

a log transformation to conform the task times to a Normal

distribution, which is the standard approach to right-skewed

data in statistics (skewness of residuals is reduced from 2.2

to 0.4; cf. Q–Q plots in supplemental analysis).

Model: If T denotes task completion time, βi and γi the
intercept and slope contribution from the representation or

orientation or method, j the index of the participant, and r
the index of the repeated measurement, then the model is:

loд(T )i jr = Intercept +α ·log(difficulty) (2)

+βi+γi ·log(difficulty)

+idj+ϵi jr ,where

γ1=0, β1=0 as baseline levels,

idj
iid
∼ N(0,τ 2), ϵi jr

iid
∼ N(0,σ 2)

All idj andϵi jr areassumedtobe independent.Hypothesis test-

ing on the terms βi+γi ·log(difficulty) evaluates the contribu-

tion of each representation, orientation, and method against

the baseline factor level. We compute confidence bands for

the expected values, and use these for hypothesis testing: If

they do not include 0, this corresponds to a p-value of α =5%
as family-wise error rate. To arrive at this family-wise error

rate, we use an individual test error rate of α/16 ≈ 0.3% to

account for multiple testing using a Bonferroni correction of

16. We use confidence bands instead of p-values because of
their better visual representation of both direction of change

and uncertainty, as well as for their taking into account mul-

tiple testing within each comparison, as they consist of many

confidence intervals.We use R’s lmer package to fit the linear

mixed effects model, and use interplot to compute and plot

confidence bands.

5 USER STUDIES RESULTS
Q1: Impact of Visual Context and Hierarchy
Introduction: Our first study examines basic linear sequen-

tial data representations: Q1: “Do participants navigate a date-
based timeline faster than a pure numberline?” This represents
a visualization choice, and validates the importance of context

when navigating multi-scale data. As hypothesisH1, we ex-
pect visual context to aid navigation, and hence expect dates

to perform faster than numbers.

Design: This study had two conditions: a timeline with a

visual hierarchy denoting decades, years, months and dates,

and numbers marked on a horizontal line without a visual

hierarchy. To minimize impact from other factors, we kept

other settings close to a ‘default’ interaction per platform:

pinch zoom and flick pan for mobile, and scroll zoom and drag
pan on desktop. Participants performed tasks for all factors
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Figure 4: Confidence bands for the expected value of the
numbers vs. dates representation for mobile (left) and
computer (right). If the slanted black line is below zero, then
numbers are faster, else dates are faster. The gray shading
indicates the 95% confidence band, and significant results are
colored in. Onmobile, numbers are faster for lowdifficulties,
whereas there is no significant difference on computer for
low difficulties, and numbers are slower for high difficulties.
Axes are non-linear due to analyzing the data in log space.

in a balanced study design. This can be seen for participant

set 1 in Table 1, with the models Q1  and Q1§ .

We chose the dates representation as the baseline, i.e., β1=
γ1=0, and β2 andγ2 represent the variation of the numbers-

based representation from the dates-based representation.

Results—Figure 4: For mobile, numbers are significantly

faster (~11% or 1s) than dates for low difficulty tasks which

primarily involve panning. For more difficult tasks which

involve zooming, the trend reverses, but is insignificant. For

low difficulty tasks on computer, there is no significant dif-

ference between dates and numbers, but for difficult tasks,

dates are significantly faster thannumbers (8–22%or1.1–9.7s).

Compared to numbers-based timelines, timelines with visual

context and hierarchy from dates were navigated slower for

low-distance targets, but faster for far-distance targets.

Q2: Impact of Timeline Orientation
Introduction: Our second study assesses a common inter-

face design decision: Q2: “Do participants navigate pan and
zoom timelines faster with horizontal or vertical layout?” Smart

phoneswere required to be used in portraitmode, sowe know

that vertical timelines were longer than horizontal ones. This

is practical for real-world visualizations on smart phones: at

initialWebpage load, smart phones are in portraitmode about

90% of the time [20]. For hypothesisH2, we expect horizontal
timelines to perform faster than vertical ones because of user

familiarity with the more common format for data visualiza-

tions (e.g., in a Google image search for “d3 timeline”, the first

100 linear timelines are all horizontal).

Design:We compare timelineswithhorizontal andvertical

orientations given common display size constraints: phones
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Figure 5: Confidence bands for the expected value of the
vertical vs. horizontal orientation across difficulties for
pinch and ortho zoom on mobile (left) and wheel and brush
zoom on computer (right). A line below zero means that
vertical is faster; above zeromeans that horizontal is faster.

are used in portrait mode, and for computers, we limit the

width to 1000 pixels (a commonmaximumwidth onWebsites),

and use the maximum height available – 810 pixels on aver-

age. Hence for mobile phones, the vertical orientation results

in a significantly longer timeline, whereas on computer, the

timeline lengths are more comparable between vertical and

horizontal.

We use the devices’ ‘default’ interactions. However, we

also pick an additional interaction combination for each plat-

form where we assume performance to be affected by the

orientation change. For mobile, we chose ortho zoom and

flick pan. For desktop, we chose brush zoom and scroll pan.
These choices arenot intended tobe equivalent across devices;

merely illustrative of a change in interaction performance.

Interaction and orientation were varied within-subjects in a

balanced study design. The data used for the twomodels in

the analysis is indicated by Q2  and Q2§ in Table 1.

The analysis was executed with orientation and method

as a combined four-level factor, with the baselines β1=γ1=0
chosen to be the horizontal orientation of the techniques.

Results—Figure 5: Onmobile, participants performed sig-

nificantly faster (8–14% or 1–1.2s) using the longer vertical

orientation with pinch zoom compared to the shorter hor-

izontal orientation for low difficulties, whereas there is no

significant difference for high difficulties. For ortho zoom

onmobile, the vertical orientation is significantly faster for

medium difficulties (~10% or 2.7s). For computer,wheel zoom
shows no significant impact of orientation. Brush zoomwith

scroll wheel pan performs significantly better vertically than

horizontally (9–18% or 1.1–3s) for low to medium difficulties

that primarily involvepanning. In summary,wefind that time-

lines oriented along the longer axis of devices are navigated

faster, and that scroll wheel pan performs better vertically.
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Table 2: Interaction combinations used in Study 3. Default
zoom in refers to the device defaults of pinch zoom on
mobile, and wheel zoom on desktop.

Zoom In ZoomOut Pan

Mobile § Computer  §
Default Pinch Wheel Flick Drag

2x Click Hold Hold Flick Drag

Brush 2x Click 2x Click 2 Finger Wheel

Ortho Ortho Ortho Flick Drag

Hold Click + Hold Click + Hold Flick Drag

Rub Rub Y Rub Y Flick Drag

Q3: Impact of interaction techniques
Introduction: FromQ2andQ3,wepicked the representation

whichperformedbestacrossparticipants—vertical timelines—

for use in our third study on interaction design, Q3: “From a
set of eight different pan and zoom interaction pairings from the
literature, which is fastest for timelines?”. As hypothesisH3,
we expect default techniques to performbetter than less famil-

iar techniques (brush, hold zoom) or steeper-learning-curve

techniques (ortho and rub zoom).

Design: For the study, we must pick a subset of technique

combinations to test as there are too many combinations to

compare in a reasonable amount of participant time. Given

many possible technique comparisons and limits on user fa-

tigue, we chose to compare popular techniques (pinch, wheel,
2x click, brush) alongwith a sampleof less common techniques

from recent literature (hold, rub, ortho). We exclude less com-

mon smartphone-specific techniques like accelerometer or

camera-based interfaces, and focus on techniques for both

computer and smartphones. With this constraint, we paired

each zoom in technique with the most complementary zoom

out and panmethods as assessed by our judgment and in pilot

studies. Table 2 lists our final combinations.

While we wished to maintain a within-subjects design, six

combinations per platformwould lead to a total study timeper

participant of 80 minutes or more on mobile. At this length,

fatigue effects are likely to affect any differences between in-

teraction designs. As such, we increased the participant pool

and split the study for this question into the three participant

sets. Each set compared between one and three interaction

techniques to the ‘default’ platformmethod. How each of the

participant sets 2–4 contributed to Q3  and Q3§ can be

seen inTable 1. Because of this split, Question 3 is investigated

in an unbalanced study design.

The analysis was completed with a six-level factor as the

method. The baseline was chosen as the default set of inter-

action techniques from each platform. Hence, β1 = γ1 = 0

represent the default technique, and β2...6 andγ2...6 represent
the compared techniques.
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Figure 6: Confidence bands for the expected value of the dif-
ferentmethods vs. platformdefaultmethods ( : pinch zoom;
§ : scroll wheel zoom), across difficulties, for mobile and
computer. Linesbelowzero showthat thealternativemethod
is faster; above zero show that the default method is faster.

Results—Figure 6: As expected, all techniques are sig-

nificantly slower than the default technique on at least one

platform. For high difficulty tasks, 2x click and hold are 11%
(5.8s) and 19% (10s) slower than pinch zoom onmobile, respec-

tively, and hold is 9% (4s) slower on computer. Rub zoom is

significantly slower than the default on both platforms across

all difficulties by 9–58% (0.6–25s).

Results generally agree between the platforms, except for

brush zoom: due to it requiring click/tap and drag, it must

pair with an alternative pan technique: two-finger pan for

mobile (2.4s slower for short-distance navigation), and scroll
wheel pan for computer. The large difference between the

two platforms’ results for brush zoom highlights that the pan

technique is important for overall performance.

Finally, compared to the default technique, 2x click, hold

and rub zoomhaveworse scalingwith task difficulty, whereas

brush and especially ortho zoom scale better.Ortho zoom is

the only technique that is estimated to perform comparably

better as difficulty increases across platforms. This indicates

it is particularly effective at large scales. However, the slope

itself is not hypothesis-tested.

To analyze user behavior, we compare both time spent ac-

tively navigating vs. idling. For high difficulty tasks, idle time

was about ~30%of task timeonmobile and ~40%on computers,

with similar trends across platforms. The technique with the
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Figure 7: Proportion of task time per technique and task dif-
ficulty, for mobile and§ computer. Participants idle most
for brush zoom (left), and least for default techniques (right).

highest idle proportion is brush zoom, with ~50%. This is in-

dicativeof fast context switches leading to ‘desert fog’.There is

less difference among the other techniques, with default tech-

niques having the lowest idle time at ~25% on mobile (Fig. 7).

Further, to quantify desert fog, we define an error as zoom-

ing in forat least 4 secondsbefore realizing therewasamistake

and zooming out for at least 4 seconds.We observe that brush

zoom led to fewer errors on computer than onmobile (0.6 vs. 2

tasks with errors per participant), presumably due to the lack

of a simple alternative pan technique on mobile. Rub zoom

has a low error rate on mobile at 0.2, with a high error rate on

computers, presumably because the gesture is intended for

touchscreens. Ortho zoom fares best overall, possibly due to

the fine control of scale. Pinch fares theworst of all techniques

on mobile, with participants making errors on 2.9 of 14 tasks,

and we speculate that familiarity with a technique may have

the side effect of premature navigation, whereas unfamiliar

techniquesmay lead tomore deliberate navigationwith fewer

errors.

6 DESIGN IMPLICATIONS SUMMARY
Target Visualization
From the number vs. timelines study results (Figure 4), we

have tworecommendations:First, long-distance timelinenavi-

gationbenefits fromvisual aids.Whenever possible, designers

should display information in groups that can be individually

processed, as opposed to long numbers. This agrees with our

hypothesis, H1. However, we also found a result counter to

our hypothesis: For short distance tasks, we recommend not

displaying hierarchical target information as the additional

complexity can slow down users. This affects timeline design,

e.g., Knightlab’s timeline.js [25] always shows visual context,

but this can slow down users.

Timeline Orientation
Drawing on our results in Figure 5, we realize that vertical

timelines outperforming horizontal ones is counter to our

hypothesis H2. We make two recommendations: First, we

recommendmaximizing timeline length by aligning it with

the device’s long axis, especially on space-limited devices.

For instance, we recommend vertical timelines for phones in

portrait mode. Second, we recommend using an orientation

that allows for an intuitive mapping between hardware and

interaction. Specifically, we suggest not using scroll wheel pan
for horizontal timelines, as this has a negative effect on the

brush zoom navigation. Otherwise, orientation does not need

to be a concern for timeline creators for computer.

Techniques
Based on the results of study 3 in Figure 6, we realize that

standard techniques do perform best overall, agreeing with

our hypothesis H3, but that brush and ortho zoom scale better

thandefault techniqueswith increased taskdifficulty, and that

ortho performed better than pinch zoom for high difficulty.

We recommend use of brush and ortho zoom for far-distance

navigation on both platforms.

BrushZoom: Brush zoom’s incompatibilitywith drag pan
is challenging, and needs to be paired with an additional tech-

nique to zoom out. In our study, we used 2x click to zoom out.

When the default panmethod is replacedwith two-finger pan-
ning, such as in our mobile study, it has a negative effect on

performance. We recommend exploring other options to pair

with brush zoom onmobile. For computer, replacing default

pan with scroll wheel pan could lead to improved navigation,

especially for close by targets. We recommend taking care

when selecting the pan method.

Ortho Zoom: Ortho zoom shows potential and is the only

method that has a negative trend on both platforms, meaning

that it tends to fare better compared to the default method

as the target distance increases. More research is needed to

confirmwhether this technique can significantly surpass the

default methods for far targets, but this scaling, as well as

the estimate for high difficulties being about on par with

the default technique, are strong indicators that users will

likely outperform the default technique with ortho zoom

with more practice, especially for high difficulties. Hence,

we recommend using ortho zoom for far distance navigation.

Ortho zoom requires familiarity, so applications with many

short-time users may prefer a default scroll zoom. However,

applications with users that stay for at least 15 minutes, and
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ideally longer, should consider using ortho zoom to enable

users with experience to navigate faster.

Context Switching: The two best methods for high diffi-

culty navigation on both platforms—ortho and brush zoom—

both enable the user to make vast scale changes with a single

interaction. This enables fast navigation, but can also have

drawbacks. For example, fast context switches can create the

need for users to spend time to re-orient themselves. We rec-

ommend taking carewhendesigning context switches, andus-

ing a longer animation time. To further unlock the potential of

techniques that require little interaction time, designers must

aid users in visual navigation as much as possible, e.g., by pro-

viding visual cues to anchor the zoomoperation, or by animat-

ing at a speed which reduces the need for data reorientation.

NoviceAudiences: Somevisualizations havenovice users

as audiences, and thus tend to use simple or familiar tech-

niques such as pinch zoom. However, care must be taken to

use this interaction method in long timelines with extensive

manipulations: because it scales linearly with the physical

motion of users’ fingers, limited learning can take place for

long-time users. To make this interaction more scalable, this

core problem needs to be addressed, and options such as a

non-linearmapping betweenfingermotion and timeline scale

change need to be considered.

7 DISCUSSIONAND LIMITATIONS
Until now, there has been no evaluation-based guidance on

how to design pan and zoom timelines for effective naviga-

tion on either computer or mobile. Given the large design

space of visualization and interaction options, it is difficult

to make an informed decision as a data visualization creator.

Due to the diversity of hardware, contexts, and users to target

with interactive timelines on theWeb, creators have even less

information about navigation effectiveness and efficiency.

Our work contributes the first design recommendations

for timeline visualizations and interactions, on both mobile

and desktop platforms. This was achieved by running a sys-

tematic in-the-wild study. Not controlling for input devices

or contexts, as opposed to a laboratory setting, improves the

applicability of our results as it is closer to how a timeline vi-

sualization would be accessed on theWeb today. Future shifts

in hardware use will limit the applicability of these results,

as different input devices have individual characteristics. We

believe that our results are applicable to different display sizes,

such as tablets. For very large displays, other physiological

factors may come into play and again limit applicability.

The results of our studymost appropriately apply to novice

users as our study participants only interacted with each

timeline and method for under 15 minutes. This may have

negatively impacted our results for uncommon and difficult

interaction techniques suchasortho zoom.Apreliminaryanal-

ysis of user behaviors confirms that ortho zoomwas primarily

used in small steps of zooming which do not fully use the po-

tential of the technique. We anticipate that more experienced

users will take effective advantage of this technique.

Whilemany questions remain due to the large design space

of pan and zoom timelines, we have found practical and use-

ful answers to questions such as the effect of visual context

for navigation, the role of orientation of timelines for mobile

and computer environments, and have identified promising

interaction techniques.We anticipate the results to generalize

well to other timeline designs where the target is not clearly

visible, and look forward to studies investigating pan and

zoom timelines further to validate our results.

8 CONCLUSION
We have investigated navigation on pan and zoom timelines

on desktop andmobile, and have identified design recommen-

dations for efficient visualization and interaction between

selecting dates and numbers, between horizontal and vertical

timelines, and between interaction techniques.

We found that (1) the visual context from dates can be help-

ful for far-distance navigation, but harmful to short-distance

navigation speed; (2) orienting timelines along the longer axis

of devices improves navigation efficiency; (3) an orientation

that allows for an intuitivemappingbetweenhardware and in-

teraction improves performance; (4) default techniques have

the best navigation speed; (5) the choice of pan technique

is important for overall performance; and (6) compared to

default techniques, 2x click, hold, and rub zoom seem to scale

worse with task difficulty, whereas brush and especially ortho
zoom seem to scale better. Given users’ unfamiliarity with

these techniques, this is a strong indicator that brush and

especially ortho zoommay outperform the default technique

with more practice, especially for high difficulties.

A large linear and non-linear design space of timeline visu-

alizations and sliders still awaits evaluation. With this work,

we aim to provide timeline visualization creators with more

guidance for effective navigation. All implementations, data

and data analysis routines used in this work are open source

(http://multiscale-timelines.ccs.neu.edu/). Future research

can build on this work for repeatable and reproducible user

studies to improve navigating multi-scale data visualizations.
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