
Topics in Cognitive Science 9 (2017) 437–466
Copyright © 2017 Cognitive Science Society, Inc. All rights reserved.
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12251

This article is part of the topic “Game-XP: Action Games as Experimental Paradigms
for Cognitive Science,” Wayne D. Gray (Topic Editor). For a full listing of topic papers,
see: http://onlinelibrary.wiley.com/doi/10.1111/tops.2017.9.issue-2/issuetoc.

Master Maker: Understanding Gaming Skill Through
Practice and Habit From Gameplay Behavior*

Jeff Huang,a Eddie Yan,b Gifford Cheung,b Nachiappan Nagappan,c

Thomas Zimmermannc

aDepartment of Computer Science, Brown University
bComputer Science & Engineering, University of Washington

cMicrosoft Research

Received 11 August 2016; received in revised form 23 October 2016; accepted 23 October 2016

Abstract

The study of expertise is difficult to do in a laboratory environment due to the challenge of
finding people at different skill levels and the lack of time for participants to acquire mastery. In
this paper, we report on two studies that analyze naturalistic gameplay data using cohort analysis
to better understand how skill relates to practice and habit. Two cohorts are analyzed, each from
two different games (Halo Reach and StarCraft 2). Our work follows skill progression through
7 months of Halo matches for a holistic perspective, but also explores low-level in-game habits
when controlling game units in StarCraft 2. Players who played moderately frequently without
long breaks were able to gain skill the most efficiently. What set the highest performers apart was
their ability to gain skill more rapidly and without dips compared to other players. At the begin-
ning of matches, top players habitually warmed up by selecting and re-selecting groups of units
repeatedly in a meaningless cycle. They exhibited unique routines during their play that aided
them when under pressure.

Keywords: Gameplay data; Analytics; Practice; Habit; Time-series; Starcraft; Halo

Correspondence should be sent to Jeff Huang, Department of Computer Science, Brown University,
Providence, RI 02912. E-mail: topics@jeffhuang.com

*This paper extends work published in Huang, Zimmermann, Nagappan, Harrison, and Phillips (2013);
Yan, Huang, and Cheung (2015).

http://onlinelibrary.wiley.com/doi/10.1111/tops.2017.9.issue-2/issuetoc




1. Introduction

Bruce Lee, the famed martial artist, once said, “I fear not the man who has practiced
10,000 kicks once, but I fear the man who has practiced one kick 10,000 times.” He
understood that mastery requires dedication to one routine, and he implied that the skill
one gains comes from persistent practice. What is it about the habits one develops when
practicing a kick that makes them someone to fear? Unfortunately, this is not simple to
measure or analyze, as physical practice is hard to capture and encode.

In scientific methodologies, tasks are assigned to participants in laboratory studies—
controlled environments where a single factor can be manipulated and the outcomes
observed. However, the artificiality of laboratory tasks along with the limited time for
participants to perform can restrict what we can discover about long-term skill progres-
sion and habit development. This paper adopts competitive games as an environment for
large-scale analysis of skill, because these do not have the same restrictions of typical
laboratory settings. The underlying investigation is about how skill develops under the
lens of individual practice and habits.

Careful analysis of data gathered from competitive gameplay offers a chance to look at
behavioral patterns of the players, including the most skilled players of the game. This
data is both naturalistic, as it is captured broadly by the gaming server or players them-
selves, and is available at a large scale, covering thousands of players. This paper empha-
sizes skillful players in Halo Reach and StarCraft 2, two games from different genres.
Halo Reach is a first-person shooter where players engage each other in weapon-based
combat. StarCraft 2 is a fast-paced strategy game where a player controls up to two hun-
dred space soldiers, vehicles, and alien creatures in order to defeat the opposing team’s
army. Both of these games are played competitively and assign players a quantified skill
level. There are numerous factors affecting what makes people play at the highest skill
levels, including tactics, reaction time, and game knowledge, but we focus more
abstractly on higher level behaviors. Cohort analysis allows us to group players by their
start date to learn about practice and progression, as well as form cohorts of players in
the same skill level so that we can compare how higher skilled players distinguish them-
selves. These behaviors illustrate how practice and habit relate to skill, particularly for
the top players of these games.

Halo Reach is used for a study of practice and progression. Being able to understand
practice over time for thousands of players can provide insight into how players improve
their skill. Also, we can review early matches from top players’ careers to see how they
differ in their evolution. Some literature concerning practice emphasizes “deliberate prac-
tice” (Ericsson, Krampe, & Tesch-R€omer, 1993), when people conduct intense, focused
activities in private to improve skill. These practice sessions are highly focused and
require rest and recuperation between sessions. However, in online video games like Halo
Reach, players who improve are not usually “private” in the same way that a violin
player practices alone. Instead, the online player is matched against other players who
play for their own reasons. Thus, competitive video game sessions are similar in form to
repeated sessions of competitive chess matches. This kind of tournament play is not

438 J. Huang et al. / Topics in Cognitive Science 9 (2017)



covered by the original definition of “deliberate practice,” but it has been shown to still
be effective. Gobet and Campitelli (2007) examine chess, where group practice (including
tournament play) was statistically more effective at improving a person’s rating than
deliberate practice (as defined by individual study). Thus, like Ericsson et al., we are
interested in the relationship between intense activity and rest; and, like Gobet et al., we
study an alternate kind of “practice” that is effective in increasing skill. The frequency
and consistency of competitive matches in our Halo Reach dataset provides a particularly
detailed perspective into this interest.

StarCraft 2 provides in-game insight into an even finer resolution analysis of habit
and individualism in matches. Replays (automatically saved logs of game state) of Star-
Craft 2 games include information about how players group and control their units under
a feature we will call “unit groups.” The mechanism is straightforward: If a player has
five soldiers selected, she can assign those five into a group number (e.g., group 3).
Later in the game, she will turn her attention to those five units and give them specific
instructions. To do so, she presses the number 3 on her keyboard to re-select her original
five soldiers. Using the entire row of number keys to assign, re-select, adjust, and reas-
sign unit groups, skilled players can simultaneously control hundreds of units in time-
pressured situations. In essence, unit groups are a mechanism to efficiently manage units
in the game, which makes them an appropriate manifestation for studying habits in
gameplay. We identify a phenomenon where habitual game actions are practiced in
relaxed situations to be relied upon later in high-pressure situations. Players who have
refined their unit group habits are higher skilled and multi-task better, particularly in
time-pressured situations. However, these habits are truly individual; while there are fun-
damental differences between skill levels, there are even stronger differences between
individuals.

Our main contributions are two case studies in gameplay behavior to show that mas-
tery of a game takes place through sustained and intense practice that can result in bursts
of improvement and can manifest as deeply engrained, individualized habits that are
available as second-nature, expert maneuvers when players are under pressure.

2. Related work

This section situates the analyses presented later in this paper within the context of
related work. It includes reviews of data analysis in games, studies in video game exper-
tise, and literature on habit and practice.

2.1. Data analysis in games

Many modern multiplayer video game titles ship with the ability to record gameplay
data and incorporate matchmaking features for players. StarCraft 2 replay data have been
studied previously to identify which characteristics explain a player’s skill level (Thomp-
son, Blair, Chen, & Henrey, 2013). Several features that were relevant to player skill
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were identified, including the “perception-action cycle,” and actions per minute (APM).
In this paper, we narrow down on the actions encompassed in the APM metric from an
alternative perspective. In addition to the variation of replay data with player skill levels
studied in Thompson et al. (2013), we also consider the variation between players at a
similar skill level.

Weber and Mateas (2009) demonstrated a process for opponent modeling through data
mining by analyzing StarCraft: Brood War replays. Their work transformed the replay
logs into vectors representing the time each unit or building type was created. A model
of the opponents’ activity is generated from these vectors to predict what they will do
next. In contrast, this paper demonstrates a process of identifying players from anony-
mous replays based on unit grouping habits, which can enhance opponent modeling as it
enables the focused study of a particular player’s game to predict strategy.

Our study of Halo Reach adopts a similar methodology as other studies of multiplayer
Halo, which use gameplay records and either player surveys or interviews. Mason and
Clauset (2013) use the same data source we use—the Halo Reach multiplayer records—
and supplement them with a survey. They find that players with more friends (both online
and offline friends) on their team perform better individually, while also performing bet-
ter as a team. Xu, Cao, Sellen, Herbrich, and Graepel (2011) take a different approach to
studying social motivations, where they aim to understand the social relationships
between Halo 3 players through the gameplay records and interviews. They found that
players were well aware of who they played with, and rather than only playing to win,
also sought to enjoy the social experience of the game. While we employ similar methods
and data as these two studies, our focus is on player skill and the change in expertise
rather than social relationships.

Prior work on characterizing Project Gotham Racing 4 (Hullett, Nagappan, Schuh, &
Hopson, 2012) explained the diverse and extensive amount of data that is collected due
to the constantly connected nature of the game consoles. The results of this analysis
helped provide a better understanding of the differences between long-term and short-
term players, the choices they make, their retention, and the extent to which various
options in the game are utilized (in this case, for example, the type of track, vehicle class,
or weather conditions). This led to recommendations for ways to reduce development
costs by eliminating unused or unpopular options and to help keep new players engaged.

2.2. Studies of video game expertise

Case studies situate the researcher inside the gaming experience, either as observers or
as players themselves. Reeves, Brown, and Laurier (2009) take an ethnomethodological
approach to analyzing expertise in the first-person shooter, Counter-Strike, by watching
an expert in situ. They find that expert play involves an understanding of the terrain and
a sense of where other players are in the environment. Reeves et al. also suggest regard-
ing gameplay holistically, as it does not make sense when taken in pieces. Another
researcher, Hock-koon (2012), becomes an expert himself in the game Alien versus
Predator. He rigorously kept a journal of his training and lessons learned, and developed
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a theory of elliptical learning. Hock-Koon argues that learning encompasses multiple
levels of understanding for a single mechanism in the game. In contrast to these case
studies that put the researcher into the game, we step back and look at aggregate data
from thousands of players to seek generalizable patterns.

Using methods similar to ours, Stafford and Dewar (2014) track 854,064 players’
scores in an online game called Axon. They notice that over time, scores generally
increase but the top players start with a lead compared to other players and continue to
grow this lead with each additional match. While we also examine skill trajectory in this
paper, we look at other factors that impact skill in Halo Reach and analyze within-game
metrics of unit group usage in StarCraft 2.

2.3. Habit and practice

People acquire skill from practice in a broad range of tasks. An early and well-known
study is that of American telegraphers by Bryan and Harter (1897). The sending and
receiving rates, measured in characters per minute, are plotted over time to produce fig-
ures showing different rates of acquiring expertise among the two tasks, and particularly
a plateau in the middle of the receiving plot. This plateau has incited discussion in fol-
low-up work, where the original authors believed that multiple practice curves existed
(Bryan & Harter, 1899), characterized by the two separate skills of mapping Morse code
into letters and predicting words from initial letters. However, Keller counters in a later
study that there is no plateau effect (Keller, 1958), citing unpublished studies by Tulloss,
where “there is no sign of a plateau in any of the Tulloss curves.” In many cases, the pla-
teaus may actually be instances of artificial asymptotes due to artifacts or poor system
design (Gray & Lindstedt, in press).

Other studies in software have looked at motivators for skill acquisition and differ-
ences between experts and non-experts in searching the Web. In a study of non-program-
mers playing a game that teaches programming, Lee and Ko (2011) found that
participants completed more levels of the game, and thus acquired additional skill in pro-
gramming if the goal was framed in terms of helping a personable robot rather than an
inanimate terminal. In another study, White, Dumais, and Teevan (2009) examined
experts and non-experts’ behavior over a 3-month period of search logs. They found that
expert searchers differed in terms of query vocabulary, sites they visited, and patterns of
search behavior. The authors were also able to predict the expertise of a user with modest
success; computer science experts were found to be easier to predict than medicine,
finance, or legal experts. In our work, we focus less on predicting skill and more on
explaining factors that affect skill.

3. Mining competitive gameplay data

Players of competitive games strive to excel in a structured environment, where those
who find an edge are rewarded with wins and better ratings. The growing competitive

J. Huang et al. / Topics in Cognitive Science 9 (2017) 441



landscape for video games has motivated game developers to implement features in sup-
port of professional and amateur players who play not just for entertainment but to
improve their skills and strategies. In competitive games, these features include sophisti-
cated ranking systems that automate player matchmaking in online ranked matches and
the ability to record sequences of commands performed by each player as replays. The
existence and popularity of replays mean that for many matches, a near-complete record
of game state, user keystrokes, and mouse clicks are available.

The assumption is that players in these competitive games are constantly trying to
improve themselves in order to win more and earn a higher rating. A side effect of rat-
ings based on player-versus-player matches is that ratings gained or lost in matches
become zero-sum among the players and are essentially relative rather than absolute met-
rics of player skill. This effect precludes performance modeling such as those proposed
by Anderson and Schunn (2000) in ACT-R Learning Theory. Nevertheless, these matches
are a form of competitive practice as players learn while playing. In essence, the match
results serve as precise records of the historical progression the players undergo, with the
game replays offering insight into what actions the players issued in each match. These
match results and replays are naturalistic and available in large numbers, but there are
also limitations to taking the approach of mining gameplay data. To supplement the quan-
titative data, we also provide quotes from players gathered through sample surveys and
retrieved from online comments to help explain some of the behavior observed in the
gameplay data.

4. Study 1: Practice and progression in Halo Reach

The first study is of a game in the popular Halo franchise on the Xbox console, Halo
Reach. It is a first-person shooter, where players battle with rifles, grenades, plasma
weapons, and swords. The matches start with the player spawning with initial weapons
somewhere on a map; additional weapons, health, and other power-ups are available else-
where. There are both single-player and multiplayer components, where the multiplayer
games are played on an online gaming service called Xbox Live, on a local network, or
on a single Xbox with split-screen.

In Team Slayer, by far the most popular multiplayer playlist (a set of game types
with similar rules), teams earn a point whenever a member of their team kills an
enemy player. When killed, players are resurrected at a random location to fight again.
The team with the most points at 15 min or the first team to reach 50 kills wins the
match. Thus, each match typically takes 12–15 min, with about 5 min following the
match to view post-match statistics, assign the next teams and map, and load the next
match. In this paper, we focus on studying skill in Team Slayer because of the sim-
plicity of the game, its popularity, and its consistency of play from match to match.
While half the players only play 40 or fewer matches of Team Slayer, the vast major-
ity of the matches are from the minority of players who play hundreds of matches
(Fig. 1).
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4.1. TrueSkill

Halo Reach employs a skill rating system called TrueSkill (Herbrich, Minka, &
Graepel, 2006), a generalization of the Elo chess rating (Elo, 1978). TrueSkill is cur-
rently used for matchmaking across numerous Xbox titles. The matchmaking system
attempts to maximize the probability a match will end in a draw, which generally
makes for an exciting match; of course, this is subject to practical constraints such as
which players are currently looking for new matches. Halo Reach does not show play-
ers their current TrueSkill rating, so there is little incentive for players to manipulate
this rating.

TrueSkill represents a player’s skill as a Gaussian distribution, parameterized with a
mean l and standard deviation r; l represents the best guess of that player’s skill, and r
represents the variation in that guess. r generally decreases over time as the player plays
more matches since there is more information about their skill. l starts with an initial
value (a prior of 3) that adjusts to a player’s “true” value for each multiplayer playlist.
The matchmaking system attempts to pair up teams with equal skill (using a conservative
estimate of skill computed by l ! Cr, where C is a constant parameter), striving for bal-
anced matches.

Player performance has been studied retroactively using TrueSkill for games of chess,
showing that it can accurately predict the outcome of matches better than other rating
systems (Dangauthier, Herbrich, Minka, & Graepel, 2007), and in StarCraft, where it
agrees with public opinion about the top players in history (d_ijk_stra, 2012).

We use the TrueSkill “best guess” rating l as the estimate of a user’s skill. The ratings
were retrieved from the official Halo servers that compute them for matchmaking. Our
dataset consists of the complete first 7 months of matches from the 3.2 million Halo
Reach players in its first week of release (September 13–20, 2012). We selected this
cohort of players to control for the time when a person starts playing Halo Reach, and
the remainder of this paper uses this cohort’s historical game records from the 7-month
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Fig. 1. In Team Slayer, half the players played at least 40 matches, and a quarter played 95 matches or more.
The chart extends beyond 200 matches as some people played over 1,000 matches during the 7-month period
following the game’s release.
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period. Note that we are not sampling—this is the complete population of players in this
cohort, and our dataset comprises every match played by that population. However, from
this data, we still know little about the mechanisms through which players improve their
skills, which is examined in Study 2.

Our analysis can be reproduced by other researchers who download game histories
from the Halo Reach API such as Mason and Clauset (2013), and the TrueSkill rat-
ings can be recomputed using the published equations (Herbrich et al., 2006). When
plotting the players’ skill in the charts, the median skill at every point along the x-
axis was taken for each group. The median reduces the bias that occurs when plot-
ting l, a skewed variable that makes taking the mean exaggerate the effect of each
factor.

4.2. Practice

Improving one’s skill is tantamount to learning, and we wanted to look at specifically
how play intensity, breaks between matches, and initial skill progression related to a
player’s skill in Halo Reach Team Slayer. These factors were chosen during discussion
between the authors as potential determinants of skill, and they relate to the phenomena
of deliberate practice (Ericsson, Krampe, & Tesch-R€omer, 1993; Macnamara, Hambrick,
& Oswald 2014), the distribution of practice effect (Donovan and Radosevich, 1999), and
the “warm-up” decrement (Adams, 1952).

4.2.1. Play intensity
We first investigated how skill is affected by a player’s play intensity. Do players

improve more if they play the same number of matches spread out over more weeks or
played more compactly in fewer weeks? Do those who play more matches per week
improve faster than those who play fewer, and is there a plateau of improvement? Prior
research has shown that accumulated practice time predicts skill even when controlling
for the current level of practice (Ericsson et al., 1993). To explore these questions in our
dataset, players are divided into cohorts of different play intensity measured by matches
per week. Then each cohort is tracked in how their skill changes in each successive week
of play, essentially weeks of practice.

From looking at these cohorts, two perspectives are needed. One perspective is at what
rate of play intensity do players improve the quickest per match. Fig. 2 presents this
information by plotting skill over matches for players grouped according to matches per
week. The figure shows that those who play 4–8 matches per week seem to do best com-
pared to other groups. However, from a different perspective of which players improve
quickest over time, Fig. 3 reveals that players who play more than 8 matches per week
can surpass the less frequent players. Despite learning at a lower rate per match, the addi-
tional matches they played more than compensated for their slower skill gains. Essen-
tially, cohorts with practice spaced out over longer periods of time progress in skill more
efficiently. These results agree with studies that examine the effect of skill retention after
practicing a task, which show that “individuals in spaced practice conditions
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outperformed those in massed practice conditions by almost one half of a standard devia-
tion” (Donovan and Radosevich, 1999). Interestingly, those who play more frequently per
week tend to start as less skilled players, but improve more rapidly, as shown by the 32–
64 and >64 matches per week groups (i.e., players who logged over 8 hours a week of
multiplayer Team Slayer).
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4.2.2. Breaks in play
Further investigating the idea of distributing practice, we can look at breaks from play-

ing in the patterns of players’ gameplay behavior. Players commonly took breaks of days,
weeks, or months due to vacation, to play other games, real-life distractions, or just tem-
porary boredom with one game. In other performance tasks studied in the past, this has
been referred to as a “warm-up” decrement (Adams, 1952). The effect these breaks have
on skill after 1 match, 3 matches, 5 matches, or 10 matches can also be measured from
the data. Here we look at skill changes between matches when the player returns to
understand how much skill is lost during a break and how long it takes to recover prac-
tice time.

Fig. 4 exhibits a few behaviors that players exhibit after breaks. The change in skill
from before the break to after the break is illustrated by the 4 lines representing the next
1, 3, 5, and 10 matches after the break. When players are not taking breaks (breaks of
0 days), skill generally increases, evidenced by the climbing intercepts on the y-axis.
Breaks of 1–2 days correlate with a small drop in skill in the next match played after the
break, but it has little long-term effect. In short, the loss of proficiency occurring due to
short breaks is likewise small.

Longer breaks correlate with larger skill decreases, but the relationship does not appear
linear (as a counterexample, 60-day breaks do not reduce skill twice as much as a 30-day
break). More concretely, a 30-day break correlates with a skill drop of 10 matches of play
(10 matches later, the skill returns to the value before the break, that is, Dl = 0); this is
shown by the intersection of the “10 Matches Later” line with the x-axis. Thus, the
amount of time required to regain skill following a 30-day break is only about 3 hours of
gameplay.

These findings supplement those in the earlier section about play intensity. It appears
that playing too frequently prevents the player from optimally earning skill per match,
but taking too long of a break results in a loss of skill when the player returns. Thus, a
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Fig. 4. Skill change (plotted on the y-axis) between the match before and after a break. The x-axis represents
instances of different lengths of breaks, with the change measured for the next match after returning from the
break, 3 matches after, 5 matches after, and 10 matches after. Larger drops in skill typically follow longer
breaks, but players can catch back up quickly.
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player who is most efficient in gaining skill is one that plays occasionally without long
breaks in between matches.

Compared to retraining in physical sports, this catch-up time is short; this may be
because there is little physical catch-up required. Players only need to reacquaint them-
selves with the controls and regain the mindset of their previous play.

When I return after a prolonged absence, my aim is less sharp and I play rubbish for a
while, which is obviously less fun. I sometimes get the added bonus of my creaky
brain forgetting the buttons, which is never fun either! —P1

4.3. Progression

4.3.1. Skill change across all players
While the median player’s skill increases over time, this is not true for every player.

We can classify different players’ skill change over time and look into each group more
closely. We converted the skill time-series into a symbolic representation of 4 levels and
4 time segments (4 9 4) using SAX (Symbolic Aggregate approximation) (Lin, Keogh,
Lonardi, & Chiu, 2003). SAX is a popular algorithm for discretizing time-series data. A
player’s skill over time is normalized and divided into equal segments; each segment is
then converted into a symbol depending on how much it deviates from the expected mean
(Fig. 5 shows an example). The segments used in our study were the four periods
between the first match and the 100th match (to control for the same number of matches

µ

Time

1 1

3 4

Fig. 5. The skill plotted over time for an example individual player. The SAX representation is overlaid, cre-
ating the sequence “1134” indicating the player improved drastically in the second half of her matches, even-
tually becoming one of the best players.
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per player). Applying SAX to the skill over gameplay data allowed us to aggregate the
different patterns of skill change from multiple players.

Table 1 shows that the most common pattern in skill change was a slow, steady
increase in skill. The second most common pattern showed the opposite trend—a slow
decline in skill in the first 100 matches. Additionally, numerous other patterns were com-
mon, including sharp rises and drops in skills, and improvement followed by decline and
vice versa. The most surprising finding is that players who improved in the first 100
matches actually ended up playing fewer total matches in the entire 7-month period than
players with declining skill. We believe two factors play a role in this effect: (a) players
who improve are more aggressive and hardcore gamers; (b) a skill improvement is not
obvious to the player, but they do notice themselves performing worse against (unknown
to them) stronger opponents, and the additional challenge may cause additional stress and
frustration, provoking them to play fewer games.

4.3.2. Skill change in top players
Next, we sought to examine how the progression of skill in the top players occurred,

especially in relation to the average player. These were the 100 players with the highest
TrueSkill rating at the end of the 7-month period in our dataset. Three players were
removed from this skill progression analysis because they did not complete at least 100
matches.

Table 1
Skill change patterns (top 15 most common patterns) in the first 100 matches for players that played at least
100 matches. There are four segments in each pattern, of which there are four possible levels. The total
matches is the mean number of matches played in the entire 7-month period that we have data, with higher-
than-average total matches highlighted in green and below-average total matches highlighted in red

No. of Players Total Matches
217
252
257
219
216
253
260
222
247
216
219
245
260
215
236

61,791
45,814
36,320
27,290
22,759
22,452
20,659
20,633
19,858
19,292
17,573
17,454
17,389
15,670
13,692
12,516 239
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Again, we converted the time-series data of skill ratings of the top players into a
SAX 4 9 4 discretization. Unsurprisingly, steady or fast climbs in skill levels in the first
100 matches were common patterns for the top players. Nearly all top players were able
to achieve a high skill level by the end of their first 100 matches. Compared to the
entire population of players, top players exhibited more large leaps in skill levels
(Table 2).

Top players improve more consistently. Dips in the first 100 matches only occurred in
14% of top players, compared to dips occurring more than half the time across all play-
ers. Since dips can be signals of technique or strategy shifts that eventually improve per-
formance (Gray and Lindstedt, in press; Scarr, Cockburn, Gutwin, & Quinn, 2011), the
lack of dips may suggest that top players already have the habits and innate tools to suc-
ceed from the start and do not encounter substantial strategy shifts. This finding provides
an orthogonal perspective to the theory of deliberate practice from Ericsson et al. (1993),
where natural ability should be overwhelmed by practice that makes a focused effort to
improve one’s skill. Because our data are captured at the onset of the game’s release, no
player had a chance to practice beforehand. However, it is quite possible that the player’s
age or other related activities may have influenced the ability for one player to progress
faster than another, as Campitelli and Gobet (2008) hypothesized in a longitudinal study
of chess expertise.

5. Study 2: Forming habits and routines in StarCraft 2

The second study focuses on a unit grouping interface feature in a popular real-time
strategy (RTS) game, StarCraft 2, where instead of controlling a single soldier, players
command up to two hundred individual units. At the start of a game, players have a sin-
gle building and a handful of units to command; the opposing player has the same. They
then compete to gather resources, build infrastructure (e.g., barracks, factories, starports),
and train armies to destroy their opponent. Like many other competitive video games,

Table 2
Common skill change patterns in the first 100 matches for the top players. Again, there are four segments in
each pattern, of which there are four possible levels. Less frequent patterns feature dips, but the dips do not
occur for most top players

No. of Players
34
15
11

8
3
3
3
3
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StarCraft 2 presents players with an intricate and demanding task that favors rapid con-
text switching and mastery of the game interface.

StarCraft 2 provides an ideal case for exploring how the behaviors of expert players
have been optimized to efficiently multi-task and strategize. StarCraft and other RTS
games require skilled players to control and manage hundreds of units at once, from sol-
diers in battle to resource harvesting units to production buildings and builders. While
novice players struggle to keep up with the increasing number of demands on their atten-
tion, better players use unit groupings to bind groups of units to single keys, and thus can
issue commands to numerous and different sets of units quickly. In the span of seconds,
an expert player can use his pre-set unit groupings to command his army (e.g., group 1)
to assault the enemy base, but also to send a specialized force (e.g., group 2) to cut off
enemy units who are en route. All the while, he is checking the production of new units
at his home base, assigned to group 5. Because unit groups expand the player’s capacity
to multi-task, we can better understand the different player skill levels by studying the
characteristics of unit group use. Replays of StarCraft 2 matches were retrieved from two
sources and included player information that allowed us to discern the skill level of the
source players. The game servers place players into different leagues based on skill:
Bronze, Silver, Gold, Platinum, Diamond, Master, and Grandmaster—which we examine
for differences in unit group usage.

5.1. Unit groups

Unit groups are commonly referred to within the RTS gaming community as “control
groups” or more colloquially as “hotkeys.”

They are used by players to efficiently control and manage diverse groups of units
within the game. Unit groups are generally referred to and accessed via keys {0–9} on
the keyboard and store selections of units within the game. This ability is important as
during a game, players can only issue commands to a working set: a single buffer con-
taining references to units currently controlled by a player. In order to control a unit not
in their working set, players must update their working set to include the desired unit
before issuing commands.

Unit groups offer the convenience of allowing allow players to rapidly switch their
working set to previously defined selections of units. Players can modify unit groups by
adding (or “binding”) additional selected units to a unit group number or by replacing its
selection with the current working set of units. Players can also recall the units assigned
to a specific unit group, which will update their working set with the units assigned to
the selected unit group. Use of unit groups is not required to play StarCraft 2, as players
can manually select units each time using the mouse, but allows for faster context switch-
ing and command execution within the game. An example of a unit group mapping is
shown in Fig. 6.

For non-Grandmaster league players, we downloaded replays from a popular replay
aggregator website, GGTracker. Players upload replays to aggregator websites such as
GGTracker to share them with others or to access the analytics of replay data (e.g.,
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APM, resources collected, etc.) that such websites provide. Replays were included in our
study if they comprised a 1 versus 1 match of at least 5 min in the North America region,
where the players’ usernames were not obscured and their skill league during data collec-
tion matched their skill league during the match. Replays representing the Grandmaster
class were obtained from season 2 of the 2013 World Championship Series (WCS) tour-
nament replay pack released by Blizzard (2013).

Distributions of aggregate unit group use are shown in Fig. 7, illustrating that increas-
ing skill correlates with steadily more frequent unit group usage. Here, we measure how
often a player uses unit groups in terms of commands issued by the player per second, a
popular type of metric for real-time strategy games. In both the less skilled leagues, there
remains a substantial proportion of players who essentially do not use unit groups. Within
the higher skill levels, all players use unit groups to some extent, with the majority exe-
cuting around two unit group commands per second.

5.1.1. Unit group features
Players often choose to assign units of different types in habitual yet distinct ways. For

example, one player may always choose to bind production structures to unit group 5, whereas
another may always choose unit group 3. Considering these tendencies, it seems appropriate
to consider frequencies for each of the unit groups separately, as unit group usage may depend
on how often the units bound to a unit group need to be selected. In this work, we focus on the
rates at which players execute unit group actions as the features for our analyses.

We also distinguish between the types of commands that can be issued to unit groups so
that a first collection of command rates is obtained for setting a unit group to the current
selection, a second for adding the current selection to a unit group, and a third for recalling
the selection specified by a unit group. This differentiation into three types of commands is

Fig. 6. Unit groups are bound to keyboard keys {0–9} and represent groups of units. Different groups can
include the same units, or no units at all.
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potentially useful again because of the freedom players have in executing unit group com-
mands—how often players repeatedly rebind or update a unit group is user dependent.

Together, these combinations yield 30 features per player per game, as we consider
three types of unit group commands: set, get, rebind, with 10 possible key bindings {0–
9} per command. Each feature was therefore the frequency that a specific unit group and
action combination was used in the game. At a high level, each unique player of the
game is represented as a vector of features ½f1; f2; f3; . . .; f30# corresponding to the fre-
quency of each unit group action.

5.2. Forming habits

5.2.1. Warm-up

Something that really made me play better was spamming; getting your hands warm
and fast will make it possible in the later stages of the game for you to multitask and
just play alot faster. Also try tapping between armies, scouting units, bases even if
nothing is really going on. The worst thing you can do is just to sit and watch your
base with 0 [actions] when nothing is needed to be done. —P2

During professional StarCraft matches, players can be seen tapping their keyboards at
very high speed. These actions are registered at rates of 200 APM and up. Understand-
ably, this allows professionals to issue a high number of commands in order to control
hundreds of units at a time. Yet, even in the first minutes of a game, when players have
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Fig. 7. Distribution of unit group usage among the skill leagues, measured as command rates (average num-
ber of commands issued per second). A significant proportion of less skilled players use unit groups infre-
quently or not at all. Increasing rates of unit group usage are seen with increasing skill levels up to the
Grandmaster league, where the average is around two commands per second.
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only one building and a small number of worker units, they are already selecting and re-
selecting unit groups at these same rates of hundreds of APM. Players at all league levels
can be found doing the same kind of re-selections during the introductory seconds of a
match.

Why do players do this? There is no effect on the behavior of the units; in the first
seconds, units are moving automatically to collect resources without any input needed
from the player. Nor is there an effect in re-selecting the same group hundreds of times
over. So, is it pointless activity, “spam” as it is called by the community?1 Are they
enacted merely to show off fast hand movement speed and to inflate the reported APM at
the end of a game? Are less-skilled players just emulating professional players mind-
lessly? Or, as P2 suggests, it is a “warm-up” action that enhances the players’ hand speed
and mentally prepares them to win?

This warm-up-effectiveness question exists in physical sports, too, where similar
warm-up activities have undergone empirical study. Like competitive StarCraft gamers,
athletes want an advantage through warm-up activities. They seek direct performative
benefits. Zois, Bishop, Ball, and Aughey (2011) report on the increased performance for
soccer players when they replace their usual warm-up routine with high-intensity leg
presses and game-like activities (passing, shooting and ball-control). Transferring these
concepts to StarCraft suggests that there may be direct physical benefits to mashing unit
selections (“APM spamming”), which itself it a high-intensity activity.

Another body of research in the field of sports has coined the term “pre-performance
routines” (PPR), defined as “a sequence of task-relevant thoughts and actions which an
athlete engages in systematically prior to his or her performance of a specific sports
skill.” Cotterill (2010)’s summary of experimental studies shows a positive impact of rou-
tines in basketball, golf, bowling, tennis, water polo, rugby, gymnastics, darts, and volley-
ball. Cotterill lays out a broad set of potential benefits of PPR that extend beyond
physiological advantages to include mental preparation, emotional control (e.g., avoiding
“choking” under pressure; Mesagno, Marchant, & Morris, 2008), tuning the reflexes, and
more. Additionally, Cotterill briefly highlights a connection between PPR and individual-
ization, arguing that routines are more effective when they are tailored to the needs of
the individual performer. We also see that the unit group patterns of individuals are dis-
tinct—see our later section on Individual Habits.

This literature suggests that StarCraft players would derive performative benefits from
“spamming”—although its benefits at lower leagues may be questionable, not because the
warm-up is pointless, but rather, because novices to the game also lack the knowledge of
how best to warm up. Looking to our dataset, we define the warm-up period as the first
120 in-game seconds. During this time period, players have only a few units to control.
Still, players can choose to bind these units to unit groups and rapidly cycle through them
to warm up. We compared their warm-up to their non-warm-up (120+ seconds until the
end of the game) unit group usage.

In the lower leagues, a few players bind units to groups at the start of the match and
then stop using them entirely. Other players, and in greater number, exhibit similar
behavior: They use unit groups more than three times as frequently during the warm-up
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phase than they do outside of it. This result could be attributed to less skilled players
who attempt to mimic the behavior of expert players at the beginning of the match by
spamming excessively yet lack the ability to sustain the unit group use rates throughout
the match as their attention is taxed. These players may be attempting to integrate unit
groups into their play (see warm-up trends in Table 3) but have not yet sufficiently mas-
tered them. Expert players show almost identical unit group use rates during warm-up
and non-warm-up phases of the game. In summary, lower league players exhibit low
effectiveness in translating their warm-up actions into the actual match.

I constantly spam [unit groups] 5 and 6, checking my queen’s energy and only stop
when I am moving guys or building units. —P3

5.2.2. Under pressure
To gain a better understanding of unit group usage and its relationship to player skill,

we focused on finer-grained categories that represent two distinct unit group usage: macro
and micro. Macro actions maintain the player’s economy to keep income and production
optimal: continually producing new units and commanding new workers or soldiers.
Micro actions optimize the effectiveness of individual units as they scout, position, har-
ass, and fight. We investigate these two categories in two different forms of time-pressure
in the game: battle and peacetime. Because it is easy to neglect unit production and
resource harvesting during battle, the ability to maintain economic efficiency (macro)
while using units appropriately during battle (micro) is a trait of a skilled player.

Get a macro rotation. . .. Every time you warp in, check money, check supply. . . Every
time you start a colossus [a unit that requires 8 food supply], . . . build a pylon [a
building that provides 8 supply]. —P4

Table 3
Median warm-up and non-warm-up command rates (in units of commands/second). As skill ratings increase,
warm-up and non-warm-up command rates increase. Players at higher skill levels seem better at sustaining
unit group usage throughout the match. Grandmasters have the highest comment rates as shown in bold

League Median Warm-up Command Rate Median Non-Warm-up Command Rate

Bronze 0.012 0.020
Silver 0.023 0.052
Gold 0.125 0.143
Platinum 0.307 0.229
Diamond 0.782 0.482
Master 1.377 0.901
Grandmaster 2.360 1.907
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Battles require a lot of focus from players as they try to manage dozens of fighting units.
More skilled players are still able to multi-task during these battles and continue to execute
macro commands. In replays, Grandmaster players show the most frequent use of unit
groups to select production buildings both in and out of battle, with lower usage rates in the
lower leagues (Table 4). Interestingly, the median event rate for Grandmaster players in
battle is quite close to that of Master league players during peacetime. Performing exces-
sive or spamming selections of production buildings can be helpful to monitor production
queues as it can ensure that the idle time of buildings is minimized. In the quote above, P4
habitually checks his different units and buildings in rotation. This player also has a ten-
dency to pair the training of an expensive unit with the construction of the food supply that
it consumes. This allows him to relegate some of his macro work to pure reflex.

StarCraft 2 is a fast-paced game, and during battles the number of units bound to a
player’s unit groups can diminish rapidly as units are eliminated from the game. Unless
they are given explicit orders, newly produced units do not automatically join these
groups. To maintain these groups, skilled players rebind their unit groups by either setting
them to new selections of units or adding additional units to them. In the replay data,
these actions can be connected to player skill.

We find that players rebind units most in the Grandmaster league both in and out of battle,
and that players in the Grandmaster and Master leagues have the most similar rebind rates
(compared to themselves) in and out of battle (Table 5). This suggests that higher skilled
players are more vigilant about managing newly produced units, and that lower skilled play-
ers are distracted by battles so they perform fewer rebinds than during peacetime. In essence,
rebinding is a type of unit management and organization task which requires more cognitive
load to perform, especially at a level of skill where this is not yet a habit.

5.3. Individual habits

5.3.1. Routine transitions
Professional StarCraft players warming up can often be observed rapidly cycling

through unit groups without necessarily issuing any commands to their selected units or

Table 4
Median macro selection rates during peacetime and battle (in units of commands/second). As skill ratings
increase, production structure selection rates increase. Many Grandmaster players select production structures
via unit groups in battle as often as players in lower leagues do during peacetime

League Median Peace Selection Rate Median Battle Selection Rate

Bronze 0.011 0.002
Silver 0.036 0.020
Gold 0.114 0.058
Platinum 0.216 0.098
Diamond 0.422 0.161
Master 0.752 0.317
Grandmaster 1.332 0.712
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structures. In terms of actual keystrokes, this warm-up can resemble repeated sequences
such as “123123123123” or “456456456.” We can estimate the transition probabilities
between two unit groups {A, B} by counting the number of times a player selects unit
group B following unit group A and dividing by the total number of times a player
selects any unit group after selecting unit group A.

The transition probabilities themselves can reveal interesting differences among play-
ers. For example, Fig. 8 shows a transition matrix of a player who has a tendency to
make repeated selections of certain unit groups, namely unit group 1. This pattern of tran-
sitions indicates that this player puts together the units that she frequently checks into
unit group 1.

Some players select a single unit group repeatedly, such as the player shown in Fig. 9.
Unlike the player in Fig. 8, who has relatively few repeated selections, the player in
Fig. 9 selects unit group 4 even when that group is already selected. Repeated selections
of the same unit group—as shown on the diagonal of the matrix—represent a higher pro-
portion of some players’ transitions than others. These repeated selections suggest a play
style that incorporates more “spam” actions. Note that selecting a new unit group does not
refocus or change the player’s view. Thus, these transition probabilities act as individual-
ized fingerprints that also provide clues to the specific play style of each player.

5.3.2. Habits change with skill
Naturally, more skilled players are dissimilar to less skilled players simply because

better players tend to use unit groups more frequently. However, this leads to a follow-up
question: Since better players use unit groups more frequently, do they use them in simi-
lar ways? Or are their styles of play truly unique?

Comparing player-to-player differences at varying skill levels answers this question.
Here, each player is represented by a vector where each value is the frequency that
they set, get, rebind each unit group for each of the 10 possible unit groups, resulting
in a total of 30 values in each vector (as described previously in Unit Group Features).

So the distance between two players P1, P2 is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf1P1 ! f1P2Þ2 þ ðf2P1 ! f2P2Þ2 þ ' ' '

q
for

the vector for each player. We consider the Euclidean distance between players as a

Table 5
Median unit group rebind rates during battle and peacetime (in units of commands/second). Rebind rates are
highest in the Grandmaster league

League Median Peace Rebind Rate Median Battle Rebind Rate

Bronze 0.006 0.000
Silver 0.010 0.000
Gold 0.019 0.004
Platinum 0.027 0.009
Diamond 0.037 0.022
Master 0.054 0.047
Grandmaster 0.088 0.097
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perspective on how similar two players are in their unit group habits (Table 6). From the
perspective of these features, Grandmaster players have the most distinct unit group habits.
This trend also appears in lower skill levels: The average distance between two Gold players
is also less than the average distance between two Diamond players, and so on.

5.3.3. Uniqueness

You just have to worry about doing the same thing every time, regardless of the situa-
tion, so it becomes muscle memory and a reaction. . . whatever you’re doing needs to
be consistent every time so it can be written in your memory and you yourself will
become consistent. —P5

Table 6 shows that players in the Grandmaster league tend to develop unique patterns
of unit group use. Additionally, using the same definition of “distance” as in the previous
section, the intra-individual distance (distance between two matches from the same player
in two different matches) was on average significantly lower (M = 0.359, SD = 0.272
commands/second) than the inter-individual distance (distance between two players).
Therefore, expert players not only tend to develop unique patterns of unit group use, but
also they remain reasonably consistent from match to match. In other words, expert play-
ers have signatures of unit group behaviors that can be used to identify them.

The fact that uniqueness in unit group habits should exist among players is not obvi-
ous, as many players will often employ similar strategies in game that require control of

Fig. 8. The transition matrix for a single player who makes few repeated selections of unit groups and
appears to use unit group 1 most frequently.
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the same unit types. Some strategies are so typical among players that they are referred
to the community as “standard play.” Along the same lines, the fact that consistency
should exist within a given player’s games is also not obvious, as players can draw from
a wide range of strategies when playing—especially when playing multiple matches
against an opponent in a tournament setting. These strategies will often rely on using dif-
ferent unit types that need to be controlled differently, yet players adapt their unit group
habits around these different strategies.

Since our data includes expert players with varying number matches played, we measure
their uniqueness by attempting to identify them based only on their unit group usage. With a
minimum of 2 matches required per player, we were able to achieve a leave-one-out cross-
validation (LOOCV) classification accuracy of 96.3% (95% CI 95.2–97.1%) compared to a

Fig. 9. The transition matrix for a single player who makes frequent repeated selections of unit group 4, with
transitions between groups 1 and 4 and vice-versa being common.

Table 6
Player-to-player distance statistics at different skill levels (in units of commands/second). The higher the skill
level of players, the greater the distance becomes between any two players. This trend suggests that as skill
level increases, players tend to diverge in terms of their unit group usage habits

League Mean Median SD Min Max

Bronze 0.076 0.036 0.188 0.000 2.318
Silver 0.118 0.057 0.204 0.000 1.710
Gold 0.261 0.139 0.283 0.000 1.818
Platinum 0.396 0.254 0.379 0.002 2.853
Diamond 0.581 0.500 0.390 0.006 2.861
Master 0.754 0.676 0.430 0.039 3.801
Grandmaster 0.955 0.914 0.378 0.096 2.452
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baseline accuracy of 2.6% when choosing the most frequent class.2 In general, classification
performance improved as the number of matches required for a player to be included was
increased (Fig. 10). As we increased the minimum number of matches to 16 matches
required per player, we were able to achieve a LOOCV classification accuracy of 99.6%
(95% CI 98.7–99.9%) compared to a baseline accuracy of 6.7%. The uniqueness of unit
grouping habits leads to high-confidence identification of a player after only a few matches.

Experts are particularly concerned with hiding their identity when sparring on public
ranked matches as it prevents opponents from gaining advantages by studying replays
and understanding one’s unique tendencies, strengths, and weaknesses. At the time of
writing, more than 70 out of the top 100 ranked players in the world were using an
obfuscated username3 to hide their identities. Our performance in Fig. 10 shows that
accurate and rapid identification of experts is possible using our features. While online
tournaments for competitive video games increase in popularity as qualifying stages for
larger events, the ability to identify players or detect mismatches in identity will become
increasingly valuable.

Professional gamers are known to study the replays of an opponent before an important
match, much like a chess grandmaster preparing for a match.

—Weber and Mateas (2009)

6. Discussion

6.1. Practice and progression

Our higher level analysis of skill through practice and progression illustrates several
results. Players gain skill at a faster rate (skill per match) when they play a moderate number

Fig. 10. Accuracy of identifying expert players from unit group habits estimated via LOOCV compared to
baseline identification performance. Here, error bars represent the 95% confidence interval for the LOOCV
accuracy. The minimum number of matches is an additional inclusion criteria for players.
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of matches. However, those who play more matches will gain skill more quickly if com-
pared to less intense players, due to the sheer number of matches they play even if their rate
of skill gain is lower. We also notice that sustained practice is necessary but not sufficient;
taking breaks of several days quantifiably impacts a player’s skill when she returns, which
requires recovery time of several matches to return to the skill she had before the break. The
longer the break, the longer the recovery period. Thus, for practice with the goal of increas-
ing skill, a player may consider long periods of consistent and sustained play. This compares
to Donovan and Radosevich (1999), who emphasize spaced practice, but here our data also
suggest that the time interval should not be too wide.

After analyses of the different factors and looking individually at the top players in Halo
Reach, what have we learned about practice and progression? Certainly, the concept of
expertise varies for every task, as telegraphy or sports training are very different activities
from blasting enemies on a screen. Some factors we examined span multiple activities:
Frequency of performing the activity correlates with higher performance up to a point, and
a catch-up period follows long breaks. But among the top players, skill is acquired differ-
ently: Some players gain skill rapidly the moment they start playing, while others lose
some skill to gain it back again later. It is also intriguing that those who reach a plateau
(as evidenced by the SAX patterns in their first 100 matches) only become the best after
time away from the game. Such plateaus that are transcended may be evidence of over-
coming a suboptimal strategy (see Gray and Lindstedt, in press), which may be further
examined in the future by corroborating long-term skill patterns (like we did for Halo
Reach with in-game analytics, as with StarCraft 2).

Our work corroborates the study of skill trajectory in an online game by Stafford and
Dewar (2014) in a couple of ways. First, Stafford and Dewar divide players into goers who
play more frequently within a fixed time-frame and resters who take longer breaks between
matches. Like our findings, players who play less intensely earn more skill per match.
Therefore, it appears there is some value gained in the period between matches if the breaks
are brief. However, we also note that our findings about longer multi-day breaks show that
when players are away from a game for many days, they will need to recover skill when
they return. Second, Stafford and Dewar suggest that the top players have some sort of
advantage from the very beginning due to their higher score compared to other players, and
their ability to increase this lead over time. We note in our skill progression analysis that the
top players have a trajectory comprising few drops in skill compared to the overall player
pool. These comparable findings hold even when the type of game differs (a competitive
player-versus-player game compared to a single-player game), and the skill metric differs
(TrueSkill requires one player to lose rating when another gains, while the score from Staf-
ford and Dewar [2014] has no relation to the performance of other players).

6.2. Expert habits, unique and consistent

Experts retain a consistent set of habits and routines that allow them to perform at
exceptional levels. Furthermore, they exhibit uniqueness and idiosyncrasy in these rou-
tines. (StarCraft unit group usage is unique enough to fingerprint individuals.)
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The consistency that exists among the usage patterns of expert players is interesting
because these players are not executing the same strategy (e.g., the order in which they
prioritize building units) multiple matches in a row in a tournament setting. They are con-
stantly forced to adapt their play to their opponent’s in-game race, style, and tendencies,
yet the same routines remain. This behavior suggests that experts adapt their unit groups
to their current build ordering and composition, perhaps as a way of coping with the need
to play quickly. If unit group use was defined by game events and outcomes (e.g., only
checking on an army when being attacked, selecting production only when idle), we would
see little consistency among players. Our results lead to the hypothesis that the relationship
between habit and performance is cyclic: Experts are capable of sustaining consistently
high performance because of their unit group habits, and their unit group habits exist as a
result of this consistent performance. Overall, our work speaks of the power of habit and
the importance of adaptation in the face of diverse and time-pressured situations.

The primacy of these idiosyncratic habits carries implications as to how the broader
picture of practice and progression might be explained. For example, one might ask how
a habit may or may not deteriorate between gaming breaks. Or, if seen as a strategy, a
particular habit might be a high-performing habit or suboptimal habit with a ceiling of
effectiveness. This view of habit offers an explanation of SAX patterns such as the pla-
teaus in skill since our analyses show that players ingrain habits into themselves, produc-
ing a well-worn consistency that intersects all of the matches that they play. Perhaps the
consistency in a habit explains both why it is possible to achieve skill improvements with
high use and why heavy practice that is not reflectively “deliberate” (Ericsson et al.,
1993) can result in plateaus.

6.3. Warmed up and ready to perform (or practice)

A common thread through both of these studies is warmth, to be warmed up after a
long break, and to warm up the fingers for quick play. Furthermore, we’ve identified a
type of warming-up that involves meaningless actions that prepares experts for perform-
ing when it counts. We believe that is particularly applicable in other skilled domains.

For example, researchers in the field of construction (Chen, Golparvar-Fard, & Kleiner,
2014; Zhao, Thabet, McCoy, & Kleiner, 2012) have designed virtual environments to
train construction workers in managing electric hazards. A virtual simulation of electrical
tasks in hazardous situations allows trainees to “recognize hazards, strengthen proper
working memory and transfer the relative experience into real life work” (Zhao et al.,
2012). In medical practice, 3D replicas of patients’ hearts, skulls, livers, and other organs
allow surgeons to rehearse a tricky surgery (Rengier et al., 2010). These practitioners are
exercising meaningless, safe actions to ingrain a skill set within themselves. In an emer-
gency, those skills will be readily available.

Our findings have a number of implications for these kinds of training. First, the suc-
cess of this training is intertwined with its frequency and intensity. Of course, the more
frequent and intense the training sessions, the more effective it will be. But there may be
an upper bound. Following our results, we can recommend less intense training sessions
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when they are sufficiently frequent. Thus, a frequent safety training program can be kept
effective despite reducing the duration of individual sessions. Second, infrequent sessions
need time for practitioners to recover their forgotten skills. There might be a number of
ways to do this. One would be to draw on our findings of meaningless warm-up actions
and to recommend a series of warm-up activities before resuming a session. Third, when
there actually is a crisis or surgery, we should also ask if respondents or surgeons need to
warm up before jumping into action. For example, a common instruction for performing
CPR (cardiopulmonary resuscitation) is to follow the rhythm of “Staying Alive” by the
Bee Gees. To warm up would be to sing a few bars of the song before beginning the
resuscitative action. In the domain of surgery, a doctor would not repeat an entire rehear-
sal surgery on another 3D print. But we would ask if there are particular hand motions in
the surgical act that can be done to “warm up.” We predict that those particular motions
are idiosyncratic, just as they are for StarCraft players.

Overall, our findings emphasize the importance of attending to the frequency and
intensity of training or rehearsal sessions; and we recommend taking a closer, micro-focus
on the habits of the hand—to see how they are engrained, warmed up, and available for
the “real” performance.

Returning to Ericsson et al. (1993), we might even consider “deliberate practice” itself
as a skilled activity that requires its own “warming up.” Ericsson et al. paint a picture of
successful practice as influenced by larger environmental and contextual factors of motiva-
tion, years of engagement, and more. Our different models of skill progression for play
intensity, breaks in play, and the theme of warming up together suggest that there is more
to discover on what an optimal “deliberate practice” session consists of. Perhaps, there is a
time of physical warm-up required to bring the body of the player to a position of readi-
ness. Or perhaps, a warm-up exercise is required to overcome an extended break in prac-
tice. Then, one might ask, what is the proper level of intensity, given the time allotted for
practice or deadline for achieving mastery. We look forward to seeing the picture of delib-
erate practice further understood, down to the moments before a session begins.

6.4. Limitations to this approach

There are several limitations to studying large-scale naturalistic gameplay data. How-
ever, many of these limitations were reduced due to our use of cohort analysis. For exam-
ple, if players in a cohort that started later stick with the game for longer, this is a signal
that the game has become more compelling to play for longer. For each of the studies
presented in this paper, players are grouped by either start date or by skill level. Players
grouped by start date allow us to observe their progression as they begin their initial
matches. Rather than examining data within a particular calendar date range, a start date-
based cohort would naturally make the first day of play for each player comparable. This
approach also avoids many confounding factors due to changes in the game itself,
changes in the game’s culture or overall player base, or even world events like holidays
or popular sporting events that can change the gameplay demographic. Players grouped
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by skill level allow us to compare between these cohorts, to identify if there are any
behaviors such as gameplay habits that allowed the players to acquire higher skill levels.

One common limitation of post hoc data analysis is the inability to understand causal-
ity since the game variables cannot be manipulated to create a controlled experiment.
When two variables such as gameplay intensity and skill are correlated, it cannot be
determined whether increased gameplay intensity caused an increase in skill or whether
some external factor caused both factors to increase; for example, this external factor
may be that those players who play more frequently are naturally capable of gaining
expertise quicker. There are numerous demographic factors that may also confound the
relationship, such as age, which affects gaming reflexes and leisure time available to
practice (Campitelli & Gobet, 2008). The third possibility, that an increase in skill causes
more gameplay intensity, is also possible but is unlikely in our study since the player’s
skill rating is not shown to the player. Regardless, we caution claiming that particular
factors will cause an increase in skill, but rather our findings describe the nature of play-
ers who have higher skill.

Another instance of this limitation is in the case of warm-up effectiveness—while
players that executed more warm-up actions were generally favored in our data, it is not
clear whether warm-up actions are merely an indicator of greater skill. Executing more
warm-up actions could be an indicator that a player is comfortable playing quickly
throughout all phases of the game rather than a form of practice that improves skill. How
a study of warm-up effectiveness in games could be potentially designed is an interesting
question itself, as it becomes difficult to separate the effectiveness of warm-up from
enforcing an unnatural play style on participants. That is, even if warming up leads to
better performance—does this benefit overcome the potential drawbacks if novice players
find it unnatural to do so?

Unlike non-competitive games where players earn a specific score based on their per-
formance (e.g., Stafford & Dewar, 2014), Elo-like rating systems start with initial priors
which take some time to converge to a new skill level. The lag may result in an inaccu-
rate rating in the beginning (due to the priors) or if a player’s skill changes substantially.
In Halo Reach, we observed the median TrueSkill decreasing from the starting value
l = 3 initially—probably because a player’s actual skill is lower than the starting value.
It was not until about 30–35 matches later that the median TrueSkill l rose.

User-reported data from 300 players when they signed up for an opt-in player experi-
ence panel showed that 18 of them (6%) reported sharing their Xbox live account with
other people. When those sharing an account play the same game, and particularly the
same playlist in Halo Reach, their different skills will confuse the rating system. The
better player may raise the skill rating when he is playing, while the worse player will
tend to lower the skill rating, causing it to be highly variable. Thus, during matchmak-
ing, the skill rating may not accurately reflect the skill of the current player. Addition-
ally, online gaming accounts can be handed off to another person, resulting in a similar
inaccurate reflection of skill; it would take a number of matches for the rating to recali-
brate to the new player’s skill.
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7. Conclusion

We identify how habits and practice of competitive video game players affect their skill
in games. Thousands of game replays from StarCraft 2 and match histories from Halo
Reach are used to understand gameplay behaviors at a macro- and micro-scale. On a micro
level, unit groupings in StarCraft 2 called unit groups are a key differentiator of individual
players as well as players of different skill levels; novice players rarely use unit groups
while experts nearly always do. While certain unit group behaviors are common across all
skill levels, expert players appear to be better at remaining composed and sustaining unit
group use in battle. But even among experts, routines and habits are unique: Both the fre-
quency with which they use unit groups and the order they cycle between groups. Broadly,
play intensity, breaks in play, and skill change over time affect a player’s skill in Halo
Reach. Players with the most efficient skill gain are likely to play with moderate frequency
and to avoid long breaks between matches. They are only surpassed by more frequent play-
ers due to the sheer number of additional matches that those players play. The best players
in the 7-month period have varied skill patterns that often run counter to the trends seen for
typical players; they have an innate advantage where they start at a higher skill level and
also increase skill with greater velocity and encounter fewer dips in skill.

Gaming skill forms from both deeply engrained individualized habits due to time pres-
sure, and sustained and intense practice that can result in bursts of improvement. For stu-
dious gamers, they may seek to practice patterns of routines, which build muscle memory
for time-sensitive situations. For casual gamers, they may be satisfied in knowing that
they are likely to be gaining skill at a faster rate per match than someone who plays more
intensely.

Our work presents evidence that supplements existing studies in cognitive science and
human–computer interaction. Gameplay data provide us an opportunity to find patterns of
players using cohort analysis. By grouping together players by start date or skill level, we
are able to determine differences between groups of players to extract signals of behavior
out of noisy naturalistic data. The signals from our two studies say “practice consistently,
stay warm.”

Notes

1. http://wiki.teamliquid.net/starcraft2/APM
2. Due to the relatively high value of p̂ in these cases, we compute the 95% CI using

the Wilson interval recommended and defined according to Brown, Cai, and Das-
Gupta (2001).

3. Obfuscated usernames are created by mixing together a sequence of the characters
“l,” “1,” and “I.”
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