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Abstract— In order to be useful in real-world situations, it
is critical to allow non-technical users to train robots. Existing
work has considered the problem of a robot or virtual agent
learning behaviors from evaluative feedback provided by a
human trainer. That work, however, has treated feedback as
a numeric reward that the agent seeks to maximize, and has
assumed that all trainers will provide feedback in the same
way when teaching the same behavior. We report the results
of a series of user studies that indicate human trainers use a
variety of approaches to providing feedback in practice, which
we describe as different “training strategies.” For example,
users may not always give explicit feedback in response to an
action, and may be more likely to provide explicit reward than
explicit punishment, or vice versa. If the trainer is consistent in
their strategy, then it may be possible to infer knowledge about
the desired behavior from cases where no explicit feedback is
provided. We discuss a probabilistic model of human-provided
feedback that can be used to classify these different training
strategies based on when the trainer chooses to provide explicit
reward and/or explicit punishment, and when they choose to
provide no feedback. Additionally, we investigate how training
strategies may change in response to the appearance of the
learning agent. Ultimately, based on this work, we argue that
learning agents designed to understand and adapt to different
users’ training strategies will allow more efficient and intuitive
learning experiences.

I. INTRODUCTION

As the number of deployed robots grows, there will be
an increasing need for end users to teach robots skills that
were not pre-programmed. Despite initiatives to create user-
friendly programming languages (e.g., Scratch [12]), not
everyone is able to become a proficient programmer, hence
the need for an easily understood mechanism by which a
robot can learn behaviors. Two common approaches are
techniques based on reinforcement learning [15] of a reward
function that assigns values to actions [8] and learning
from demonstration [3] using demonstrations of behaviors.
Unfortunately, the former requires that the reward function
be fully defined, which may not be intuitive to non-technical
users. The latter requires that the user be able to successfully
complete the task using the robot’s actions.

While both classes of techniques have their merits, we
believe there is a third paradigm which has great potential
for non-technically-trained users to easily teach robots or
agents behaviors in situations where demonstrations may not

be possible or feasible. In this paradigm, we focus on models
of training and learning based on providing categorical
positive and negative feedback to a learner. When providing
feedback according to categories, trainers can give some
form of positive feedback, some form of negative feedback,
or withhold feedback. It is this latter case that proves most
problematic from an algorithmic point of view.

A natural way to map these categorical feedbacks to
the numerical rewards used in reinforcement learning is to
encode categorical rewards as positive numerical values (for
example, +1), categorical punishments as negative numerical
values (for example, −1), and a lack of categorical feedback
as 0. While there has been some success implementing
reward-maximizing algorithms to learn from human feed-
back, treating feedback that is inherently categorical from
humans as numerical has the potential to cause problems.
First, it is unclear how a reinforcement-learning algorithm
should use a feedback of zero. Should it be content with its
decision (0 is better than −1) or change its decision (perhaps
it could have gotten +1)? Second, consider a case where
there is more than one way to provide positive feedback
(e.g., “ok” or “good”). Should one feedback have a numerical
value of +1 and the other +3? What about +1 and +17?
Absent a clearly defined reward function, any choice of
assignment from categorical feedback to numerical value is
likely to be arbitrary, and may prove a hindrance to learning.
Third, people’s teaching strategies may be non-stationary. For
example, other work [9] has shown that users tend to increase
their use of neutral feedback over time, in which case the
most effective training algorithms will need to account for
the teaching strategy being used and how it changes.

This paper discusses the results of three user studies in
which participants trained a set of virtual agents, showing
that different human trainers may take different approaches
to teaching the same behavior. Based in part on these results,
we argue that robots and virtual agents designed to learn from
human trainers should treat human feedback as categorical
input, rather than a numerical value, and should explicitly
account for variations in training strategies. Furthermore, we
discuss a probabilistic model that can be used to encode
the categorical feedback, or lack thereof, that human trainers
provide to agents while training. We present this model as
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a foundation for algorithmic development that is beyond the
scope of this work.

II. BACKGROUND AND RELATED WORK

A. Behaviorism

Behaviorism, a field of psychology, focuses on learning
from feedback. Skinner introduced operant conditioning, a
concept of providing feedback to modify the frequency of
behaviors [13]. There are a number of ways in which training
feedback can be provided. These so-called operant condi-
tioning paradigms can be grouped into four categories [14]:
positive reward (R+), negative reward (R−), positive punish-
ment (P+), and negative punishment (P−). Rewards increase
the frequency of the behavior they are associated with while
punishments decrease the frequency. Positive refers to adding
a stimulus and negative refers to removing a stimulus. An
example of R+ is giving a dog a treat (rewarding by adding
a desirable stimulus). An example of P− is taking a prized
toy away (punishing by removing a desirable stimulus).

Dog trainers have learned that using only positive reward
(R+) results in fewer unintended side effects for dogs than
when positive punishment (P+) is used to reduce undesired
behavior [5]. Given the widespread prevalence of pet dogs in
the United States and around the world, we anticipate that
many human trainers will intuitively apply these concepts
when training robots. Because of biases toward the R+/P−
operant conditioning paradigms, taking these strategies into
account when designing learning algorithms may provide
a contextual advantage for learning from human trainers.
Earlier work supports this intuition [11].

B. Learning from Reward

In the machine-learning literature, one common goal is
to learn to maximize an unknown reward function. In this
problem domain, there are different actions an agent can
choose. After selecting an action, the agent will receive a
numerical reward based on the chosen action. The agent’s
goal is to maximize the long-term expected reward, and must
balance exploring actions to better estimate their true payout
with exploiting the currently estimated best action. While
conceptually a simple problem, studies have shown that
human learners behave sub-optimally on such tasks [1], [2],
suggesting the problem is indeed non-trivial.1 In a contextual
setting, the reward for the different actions will depend on the
world’s current state, which the learner can observe. Further,
if the agent’s actions determine which state is reached next,
the problem is a sequential decision problem and can be
addressed in the framework of reinforcement learning [15].

In contrast to learning from a fixed numerical reward
signal, our work is part of a growing literature that addresses
learning from human feedback. Thomaz and Breazeal [16]
treated human feedback as a form of guidance for an agent
trying to solve a reinforcement-learning problem. The human
feedback did not actually change the reward coming from

1In our work, the human trainers define the correct policy and provide
rewards, rather than attempt to learn from those rewards.

the underlying problem, or the optimal policy, but improved
exploration and sped-up learning. The study also found that
humans would give reward in anticipation of good actions,
rather than rewarding or punishing the agent’s recent actions.

There is also a growing body of work that examines how
humans want to teach agents by providing demonstrations in
a sequential decision task [4], or by selecting a sequence of
data in a classification task [7]. More similar to our work,
Knox et al. [9] looks at how people want to provide feedback
to learning agents. Knox et al. found that when a human
reduces the amount of feedback they give over time, forcing
the learning agent to make mistakes can increase the rate
of feedback. Our work differs because we focus on how
humans naturally provide feedback when training, not how
to manipulate that feedback.

III. A PROBABILISTIC MODEL OF HUMAN FEEDBACK

This section presents a probabilistic model of human
feedback that encapsulates differences in trainer’s categorical
feedback strategies. This model forms the basis of algorithms
designed explicitly to learn in this paradigm [11]. We model
the learning problem as a set of discrete observations of the
environment and a set of discrete actions that can be taken.
The behavior being trained is represented as a policy that
is a mapping from observations to actions. At any time, the
trainer may give explicit reward (R+), explicit punishment
(P+), or do nothing (which corresponds to either R− or P−
depending on the strategy being used).

We can classify a trainer’s strategy by the cases in which
they give explicit feedback. Under an R+/P+ strategy, a
trainer typically gives explicit reward for correct actions and
explicit punishment for incorrect actions. Under an R+/P−
strategy, correct actions typically get an explicit reward and
incorrect actions typically get no response, while an R−/P+
strategy typically provides no response for correct actions
and explicit punishment for incorrect actions. An R−/P−
strategy rarely gives explicit feedback of any type. Under an
R+/P− strategy, the lack of feedback can be interpreted as
implicitly negative, and under an R−/P+ strategy, it can be
interpreted as implicitly positive—the lack of feedback can
be as informative as explicit feedback.

Our model can be used both to learn from human trainers
through Bayesian inference, and to identify the strategies
that those trainers are following. Our model assumes that
the trainer first determines if the action taken was consistent
with some target policy λ∗ for the current observation, with
some probability of error ε. The trainer then decides whether
to give explicit feedback or simply do nothing. If the trainer
interprets the learner’s action as correct, then she will give an
explicit reward with probability 1−µ+, and if she interprets
the action as incorrect, will give explicit punishment with
probability 1−µ−. So, if the learner takes a correct action it
will receive explicit reward with probability (1−ε)(1−µ+),
explicit punishment with probability ε(1 − µ−), and will
receive no feedback with probability (1− ε)µ+ + εµ−.

The parameters µ+ and µ− encode the trainer’s strategy.
For example, µ+ = 0.1, µ− = 0.1 correspond to an R+/P+
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strategy where nearly every action receives explicit feedback,
while µ+=0.1, µ−=0.9 correspond to an R+/P− strategy,
where only actions interpreted as correct tend to receive
explicit feedback. Putting these elements together, for time
step t (each time step corresponds to the agent observing the
world, choosing an action, and receiving an explicit/implicit
feedback from the trainer), we have a distribution over the
feedback ft conditioned on the observation ot, action at, and
the trainer’s target policy λ∗,

p(ft = f+|ot, at, λ∗) =
{
(1− ε)(1− µ+), λ∗(ot) = at
ε(1− µ+), λ∗(ot) 6= at,

p(ft = f−|ot, at, λ∗) =
{

ε(1− µ−), λ∗(ot) = at
(1− ε)(1− µ−), λ∗(ot) 6= at,

p(ft = f0|ot, at, λ∗) =
{
(1− ε)µ+ + εµ−, λ∗(ot) = at
εµ+ + (1− ε)µ−, λ∗(ot) 6= at.

Here, f+ is an explicit positive feedback, f− is an explicit
negative feedback, and f0 represents a lack of feedback.

What is important to note about this model is that,
depending on the strategy (and the corresponding µ+ and
µ− parameters) used, the lack of feedback may be more
probable for correct actions than incorrect actions, or vice
versa. Therefore, the correct inference to make from a lack
of feedback depends on the training strategy being used.
This model formalizes the idea that learning depends on the
training strategy being employed.

We used two learning algorithms (SABL and I-
SABL) [11] that inferred the correct behavior using our
feedback model, as well as two algorithms (M−0, M+0)
based on algorithms in the literature on maximizing human
feedback considered as reward [6], [8].

IV. USER STUDIES

To assess choices of feedback strategies, we conducted
three user studies in which participants trained a virtual agent
to move towards objects as they approached from different
sides of the screen. In the first two studies, this agent was
represented by a drawing of a dog and the object to be
approached as a rat, which would run away when the dog
moved towards it. The third study used a number of different
visual representations, to gauge the effect of the agent’s
appearance on the user’s behavior.

In our training task, learning agent was drawn at the
center of the screen, and the objects arrived once every two
seconds from the edges of the screen. The objects came
from three points along each of the four edges, resulting
in possible 12 observations. When an object appeared, the
agent moved from the center towards one of the edges. If the
learner moved towards the edge from which the object was
coming, that object was chased away. If the learner ran to a
different edge, the object entered the field in the center and
disappeared. Figure 1 shows the agent and task environment
as they appeared in the first and second studies, as well as
the alternative sprites used in the third study.

To train the learner to chase the objects away, users could
provide reward, punishment, or no feedback. Users signaled

(a) Task Interface (b) Sprites

Fig. 1: A screenshot of the study interface (a). Additional buttons that
begin and end training have been cropped out. In the third study, the
dog sprite could also have been a robot, a snake, or an arrow (b).

when training was complete by pressing a button. Data for
a training session was included only if it was terminated by
the user signaling it was complete.

In each of the studies, users filled out a survey indicating
their age, gender, education, history with dog ownership,
experience in training dogs, and with which dog-training
paradigms they were familiar (if any). After completing the
initial survey, but before beginning training, users were taken
through a tutorial, which first animated approaching objects
and then instructed the user how to reward and punish the
learner. After the tutorial, the users began a series of training
sessions; each session was performed with a different virtual
agent that learned from scratch. The user was told that each
session required new training.

After each session, participants were shown a textual input
box, and were asked: “Please describe the strategy you used
when training the [agent] during the previous experiment.
For example, when did you provide reward/punishment or
when did you decide to change the task or start over (if
appropriate)? Is there anything else you want to say about
training the [agent]?”

A. First and Second studies

The first an second studies focused on how training
strategies differed between users for a fixed training task, and
on how a user’s prior training experience affected their choice
of strategy. As such, the learning agent in these studies was
represented as a drawing of a dog, and the approaching object
as a rat. In both the first and second studies, each training
session used a different learning algorithm (in random order).

Participants for the first two studies were recruited from
three different sources: (1) a senior-level game design class
at North Carolina State University (credit was offered for
participation), (2) a computer science departmental mailing
list, and (3) two Internet communities focused on dog train-
ing (a Facebook group about positive-reinforcement training
and a Japanese dog forum). Although the recruiting sources
were the same for the first two studies, the distribution from
each source was different since recruitment was performed
at different times. Furthermore, different training algorithms
were used in the first two studies: M−0, M+0, and SABL in
the first; and SABL and I-SABL in the second.
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B. Third study

It is possible that some users would avoid punishment
when the agent appears as a dog, with which people often
have positive associations and often avoid punishing in real
life training. If so, and if the agent being trained was not
represented as a dog, the distribution of strategies used might
differ from that found when the agent does appear as a dog.

The third study addressed this question by using a number
of different visual representations for the learning agent. The
third study was published on Amazon’s Mechanical Turk
system as a set of Human Intelligence Tasks, and three
separate tasks were published. Participants were recruited
separately for each of these tasks, and each task had its own
set of users. We had a total of 211 participants between the
three tasks in the third study.

This study used a similar survey, interface, training task,
and learning algorithm to thr first and second studies, but
to assess how the depiction of the learning agent affects
the trainers’ strategies, the images used to represent the
agent and the approaching object were varied. In addition to
the dog/rat (Figure 1(a)), the third study used robot/battery,
snake/bird, and arrow/square (Figure 1(b)) sprites, believing
that these sprites would lead to varying degrees of anthro-
pomorphisation of the agent by users.

The first task had two conditions, presented in random
order to the user. The first condition had a dog chasing
rats away from a field, while the second condition replaced
the dog and the rat with a robot and a battery, though the
mechanics of the environment were the same. The second
and third Mechanical Turk tasks each had only one condition.
The second task replaced the dog and rat with a snake and a
bird, while the third task used an abstract arrow and a square.

It should be noted that, in the third study, workers in
Mechanical Turk were compensated a base amount of $0.25
for their participation in the study, and were offered an
additional $0.25 bonus if the agent learned to act appro-
priately in more than 90% of cases. This added incentive
encouraged participants to take the task seriously, but may
have introduced some bias in the resulting strategies.

V. ANALYSIS OF TRAINING STRATEGIES

Our core hypothesis was that human trainers follow a vari-
ety of strategies when teaching behaviors using feedback. As
such, we characterized the distribution of different training
strategies, and the factors that influenced that distribution.
We were most interested in the occurrence of the R+/P−
and R−/P+ strategies, as these strategies allow our model of
trainer feedback to interpret meaning of the lack of feedback.

We used our probabilistic model of the training process
to categorize the strategies that participants in our studies
followed. As discussed previously, we group strategies into
four categories: R+/P+, R+/P−, R−/P+ and R−/P−, by
the conditions under which they do and do not provide
explicit feedback. Specifically, we estimated the µ+ and µ−

parameters used for each training session by computing the
fraction of correct and incorrect actions that did not receive
explicit feedback. The strategy for a session was classified

TABLE I: Frequency of strategies in the first and second studies.

P+ P−
R+ 93 125
R− 6 3

TABLE II: The number of participants beginning a training session
using one strategy (rows) and ending it using another (columns) during
the first study. Entries on the diagonal indicate no switch.

HH
HHH

begin
end R+/P+ R+/P− R−/P+ R−/P−

R+/P+ 65 4 2 0
R+/P− 10 52 1 1
R−/P+ 2 1 4 1
R−/P− 0 0 0 1

as R+ if µ+ was less than 1
2 , and R− otherwise. Similarly,

the strategy for a session was classified as P+ if µ− was
less than 1

2 , and P− otherwise. (Recall that low µ+ and µ−

values correspond to frequent explicit feedback.)
For the first and second studies we consider data from the

105 users who completed at least one experiment. Table I
summarizes the distribution of training strategies from the
first two studies. Recall that some participants for these stud-
ies were explicitly recruited due to their experience training
dogs and they trained a learner depicted with a dog sprite
(Figure 1(a)). We found that, reassuringly, the least popular
strategy was R−/P−, as such a strategy gives the learner very
limited feedback. Overall, the dominant strategies in these
studies were R+/P− (frequent rewards, few punishments)
and R+/P+ (frequent rewards and punishments).

We expected the R+/P+ strategy to be common, because
the strategy represents providing as much information to the
virtual dog as possible. As one participant put it, “I just
punished the dog if they went to the wrong side and rewarded
them when they went to the right side.” We also expected
to see many users using the R+/P− strategy, since it is a
common dog-training paradigm. One participant explained,
“I tried to Reward only. Rewarded when the dog was moving
or had moved toward the rat, and provided no opportunity
for Reward when the dog moved away from the rat.”

Some participants changed strategies during training ses-
sions. Table II shows how trainers in the first study changed
strategies over time. There was no change in most cases
(84.7%), but switching from R+/P− to R+/P+ was common
(15.6%), and was often associated with improved agent
performance, possibly to maintain a good behavior once
it had been learned. The existence of multiple strategies
and changes in strategy suggest that learning algorithms
need to be aware of strategy during the training process.
While existing work has addressed trainers changing their
strategies by actively encouraging users to give certain types
of feedback [10], it may be more effective to integrate the
notion of strategy change with an overall model of trainer
feedback, such as the one presented here.

A. Effects of Dog-Training Experience

As we are interested in the degree to which a participant’s
training experience influenced their strategy, we asked each
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Fig. 2: A mosaic plot (generated with the R language) with Pearson
residuals for strategies in the first study, grouped by dog-training
experience. Users with no experience were likely to use R+/P+, users
with some experience were likely to use R+/P−. Differences were 2–4
standard deviations from expected (significant with 95% confidence).

user to rate their level of experience in dog training on a
four-point scale from “None” to “I am an Expert.” Many
participants had no experience training dogs, and those that
did varied in their degree of experience.

To visualize these results, we organize the data into a
contingency table and depict it as a residual mosaic plot
(see Figure 2). There are a few important things to note
about such plots. The data is organized into boxes, with one
column of boxes for each value of one of the categorical
variables. The order of the boxes within each column follows
the set of values of the other categorical variable. The area of
a box in the plot indicates the number of responses in that
category. The width of each box represents, in aggregate,
the probability that a response will fall into that column,
regardless of which row it is in, e.g., Pr(Experience=Some).

The height of a box indicates the amount of data in
that column when the value of the row is considered, e.g.,
Pr(Strategy = R+/P− |Experience = None). Thus, the
more asymmetric any box is, the more it deviates from the
expected value; tall thin rectangles indicate more data in that
entry than expected and short wide rectangles indicate fewer
data in that entry than expected.

Additionally, the color of an entry indicates whether or
not the rectangular shape of an entry represents a significant
deviation from the expected value. A shaded entry means
that the value that box represents is more than two standard
deviations above (or below) the expected value, and is
therefore significant with 95% confidence. If the border of
the cell is solid, then the deviation is above the expected
value, if it is dashed, it is below expected.

Figure 2 shows the relationship between dog-training
experience and the employed feedback strategy in a mosaic
plot, for participants in the first study. As a common approach
to dog training is to only use positive feedback, we expected
that users with dog-training experience would be more likely

TABLE III: Breakdown of strategies used in the third study when
training an agent appearing as a dog, robot, snake or arrow.

agent R+/P+ R+/P− R−/P+ R−/P−
dog 151 25 1 1
robot 188 21 0 4
snake 64 7 2 3
arrow 43 6 1 2

to use R+/P− than those without experience.
In the first study, we found that the more dog-training

experience a user had, the more likely they were to use
the R+/P− strategy. This relationship was found to be
statistically significant at the 95% confidence level. However,
this relationship did not appear as strong in the second user
study in which users with at least some experience were very
likely to use R+/P− (results not shown). This difference
likely reflects differences in the distribution of participants
between the two studies, with the second study having only
four participants with no training experience.

Both the first and second studies specifically recruited
participants with dog-training experience, and that choice
almost certainly affected the observed frequency of different
strategies. The third study, however, drew its participants
from Amazon Mechanical Turk, and so should have no bias
towards users with training experience.

Table III summarizes the distribution of strategies used
in third study. We only report data from training sessions
where at least 50% policy accuracy was achieved.2 In this
study, unlike the first two, R+/P+ strategies were much more
common than R+/P− strategies. However, R+/P− strategies
were still common, and still occurred much more frequently
than R−/P+ or R−/P− strategies.

B. Effect of Agent Appearance

The third study also addressed the question of whether
the appearance of the agent would affect the distribution of
strategies used, either because users believed that an agent
resembling a dog would respond better to strategies that are
effective with real dogs, or because the appearance of an
animal made users more averse to giving punishment. Recall
that the third study used the same learning task as the first
and second studies, but varied the sprites between a dog/rat,
robot/battery, snake/bird, or arrow/box.

As shown in Table III, the distribution of strategies in
the third study was relatively insensitive to the agent’s ap-
pearance. Fisher’s exact test shows that the number of times
each of the four strategies was used was not significantly
different (p > 0.21) between subjects training the dog and
those training the robot. Similarly, we did not see differences
in strategies between the snake and the arrow (p = 0.10).

Nonetheless, there is some evidence that the learning
agent’s sprite did influence trainers’ choices of strategies.
Consider Figure 3, which shows the distribution of dog-
training experience for those trainers that used the R+/P−
strategy, grouped by sprite. What is interesting to note is

2We exclude more data in the third study to remove participants who do
the minimum amount of work to receive their compensation.
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Fig. 3: A bar plot showing the distribution of participants in the third
study who used the R+/P− strategy, based on their experience with
dog training, grouped by the sprite they were training.

that participants with dog training experience used R+/P−
in roughly equal proportion when training the dog and
the robot; however, for participants without dog training
experience, it appears a higher percentage used the reward-
focused strategy on the dog when compared to the robot.
One plausible explanation is that empathy toward the dog
caused users to avoid explicit punishment, even if they were
unfamiliar with dog-training techniques.

C. Trainer Mistakes

On of the main assumptions of our probabilistic model that
trainers can make mistakes when providing feedback (the ε
parameter). The results of all three studies demonstrate that
trainer errors are common, and that any approach to learning
from feedback must be able to recover from such errors.

Note that since we cannot know if a user made a mistake
for actions that did not receive feedback, we can only
estimate ε from cases in which explicit feedback is provided.
We estimated the average ε for participants in the first and
second studies combined to be 0.085. In the first task of the
third study, where agents were represented as both dogs and
as robots, the estimated average ε was 0.034.

The comments made by some of the participants suggest
possible sources of error. One participant explained, “... i kept
getting mixed up at first and hitting the wrong buttons...” ,
suggesting that error could be reduced with a clearer interface
design and more user practice. Another user commented,
“At first it got frustrating because my timing was off on the
reward and punishment. That doesn’t help the dog and they
become afraid and stay away because they are confused.”
Our model does not currently account errors in the timing
of feedback. This problem, however, may be mitigated by
taking the weighted average of feedback over a longer time
window, as in related work [8].

VI. CONCLUSION

Previous work on learning from human trainers has had
some success treating human feedback as a numeric re-
ward. However, the results in this paper demonstrate that
the complexities of humans training strategies are not well
captured by the numeric paradigm. Specifically, we showed
that 1) different users adopt different training strategies when
teaching an agent, and their choice of strategy can be affected
by their training background; 2) feedback strategies can

change over the course of a training session; and 3) there is
some evidence that the feedback strategy chosen may depend
on the type of agent the user believes they are training.

Taken together, these findings are a strong indication that
there is a critical need to develop algorithms that explicitly
model the feedback strategy a trainer uses. As a starting
point, we provided a probabilistic model of human feedback
to can describe the types of strategies we observed in our
data. Expanding the model, and algorithms that use it, is a
ripe area for new research. Accordingly, we hope this paper
will raise awareness of the complexities of feedback among
researchers working on learning from human teachers and
engender the development of additional algorithms explicitly
designed to learn from categorical feedback strategies.
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