
filtered.ink: Creating Dynamic Illustrations with SVG Filters
Tongyu Zhou Connie Liu
Brown University Brown University

Providence, Rhode Island, USA Providence, Rhode Island, USA

Joshua Kong Yang Jeff Huang
University of Massachusetts Amherst Brown University

Amherst, Massachusetts, USA Providence, Rhode Island, USA

Billowing smoke

Bubbling cauldron

Rippling water

Writhing moss

Glowing lights

Trembling cat

Figure 1: Example dynamic illustrations created using filtered.ink, with corresponding animated components annotated above.

ABSTRACT
Vector illustrations are object-based, meaning they are composed
of strokes that can be filtered individually through textures or
animations and transformed without loss of quality. These filters
are typically difficult to specify without programming prerequisites.
We propose filtered.ink, a full-featured illustration application to
construct and explore filters via a node graph interface with a live
preview. This turns vector graphics and their filters into a form of
vector hypermedia that can be shared and remixed with new users.
By examining interactions that occur when crafting, remixing, and
using filters for dynamic illustrations through a task-based usability
study, we expose new workflow patterns and avenues of expression.
The observations result in a user model supported by filtered.ink:
see, want, rewant, and remix. In this model, the artist breaks away
from traditional notions of illustration, taking advantage of the
inherent remixability of the strokes and filters in the vector graphics
format.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9421-5/23/04. . . $15.00
https://doi.org/10.1145/3544548.3581051

CCS CONCEPTS
•Human-centered computing→User interface toolkits;Web-
based interaction.

KEYWORDS
vector illustration, SVG, animation, dynamic textures

ACM Reference Format:
Tongyu Zhou, Connie Liu, Joshua Kong Yang, and Jeff Huang. 2023. fil-
tered.ink: Creating Dynamic Illustrations with SVG Filters. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems (CHI ’23),
April 23–28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3544548.3581051

1 INTRODUCTION
Still images capture moments in time. When the static backgrounds
in these images are juxtaposed against animated motifs, however,
they are able to capture liminal impressions of time, where time is
suspended in some elements yet flowing in others. This style of
media, described as cinemagraphs [20] or kinetic textures [22, 23],
allows artists to control the propagation of elements over time and
lends to new creative possibilities. For clarity, we will collectively
refer to this media within drawing as “dynamic illustrations.”

Traditionally, GIFs and other video formats are used to create
dynamic illustrations. While these raster formats have long dom-
inated the web, they are not scalable to larger screens without
incurring unwanted pixelation, which becomes a growing problem

See the filtered.ink website for details about using the product, and subscribe to updates

https://filtered.ink/
https://doi.org/10.1145/3544548.3581051
https://doi.org/10.1145/3544548.3581051
https://filtered.ink/
https://docs.google.com/forms/d/e/1FAIpQLSeTCgnwF1gjrc1O8mfJ_5TmT_TLowFQ2DUhsollmqPG84pAFQ/viewform?usp=pp_url&entry.1299571007=Sketchy+%2B+filtered.ink:+creating+and+remixing+vector-based+illustrations&entry.1760653896=FilteredInk_CHI23

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

with the rapid increase of screen resolutions. Their textures and
animations also cannot be easily modified after export, as produc-
ing the resulting image file is an irreversible one-way conversion.
Small changes to animation speed, lighting, or texture density in
this traditional raster workflow thus become constrained and can-
not be made to the underlying strokes. Conversely, vector-based
media such as scalable vector graphics (SVGs) are pixel-agnostic
and democratize the editing of dynamic illustrations, as the file
format itself separates strokes from their modifying filters, each of
which can be remixed into a new drawing (by remixing the illus-
tration) or aesthetic (by remixing a filter). Unlike in raster, where
edits are made sequentially and reverted from a linear undo stack,
edits in vector can be non-linear by being applied to any past stroke.
This ability aligns with previously expressed artist desires to save
and apply different versions and styles of brushes more freely [25].
Non-linear editing can also facilitate rapid iteration and refinement
of the illustration across different systems. These properties make
vector graphics an ideal candidate for dynamic illustration.

Despite their benefits, vector graphics are not a common out-
put format in illustration1. This paucity can be attributed to their
limited forms of expression compared to those of raster-based il-
lustrations. Although vector-based systems like Adobe Illustrator
[16] and Inkscape [38] abstract away the complexities of vector
programming through common drawing metaphors, they provide
few to no options for creating detailed textures and animations. In
particular, creating fluid animations for vector graphics has already
been shown to be a non-trivial task for the user [3]. As a result,
vector-based artwork is often limited to a minimalist, geometric ap-
pearance, restricting the variety of illustration styles an artist could
express. We focus on this gap of texture and animation creation to
enhance the breadth of vector illustrations.

To enable the authoring of dynamic vector-based illustrations,
we create a web-based system called filtered.ink that abstracts styl-
ization code for SVGs. Its node graph interface allows users to
author animated computational brushes composed of SVG filters,
or raster transformations that operate on existing vector primi-
tives. The illustrations are re-rendered at each display resolution to
empower users to create vector illustrations with the same expres-
siveness as that of raster. The platform provides several ways to
create, manipulate, and remix these filter transformations that can
then be applied onto a canvas. Since this system introduces an un-
familiar medium and new workflows, we then conduct a task-based
usability study using filtered.ink with hobbyist and professional
artists, who are familiar with common vector-based design tools
but not SVG filters, to understand how the system can fit into the
visual artist’s natural workflow and influence dynamic illustration
outcomes. By observing key behavioral patterns, preferences, and
methods of expression unique to the vector format that are shared
amongst the artists when using computational brushes, we identify
a user model supported by filtered.ink and derive further insights
into how vector-based creative tools with potential technical learn-
ing curves can be designed to better support the artist’s natural

1Although the exact numbers are hard to pinpoint, filtering for software that support
vector output on ArtStation reveals vector graphics only occupy 171,500 out of 4.4
million digital 2D illustrations (3.9%). On sites dedicated to vector graphics such as
IconScout, only 220,000 are illustrations or animations while 4.8 million are icons.

mental model. From our study, we characterize an artist’s workflow
into four categories: see, want, rewant, and remix.

The contributions of this paper are 1) a full-featured system for
dynamic vector illustration that enables users to achieve expressive
raster-like styles through SVG filter authoring and 2) a user model
for vector-based creative systems with learning curves informed
by a task-based user study on workflow patterns and affordances.

2 RELATEDWORK
2.1 Vector Creation and Manipulation
Existing systems for vector-based media creation or manipulation
fall into two general categories: human-centered approaches and
automatic generation. One example in the former category is Sketch-
n-Sketch, an SVG editor that demonstrates how direct manipulation
interfaces with general-purpose programs can allow both experts
and non-experts to use programmable systems [10]. This editor al-
lows users to manipulate code to affect the rendered vector graphic
and directly tweak the vector graphic to see the reflected changes
in code, which the authors termed output-directed programming
[11]. Other human-centered systems include commercially avail-
able tools like Adobe Illustrator [16] and Inkscape [38] for drawing,
and Adobe After Effects [15] and SVGator [49] for animation. These
systems support vector illustration and animation by abstracting
away the programming aspects of vectors for physical drawing in-
teractions and timeline-based animation frameworks, respectively.
However, they separate the drawing and animation processes. In
addition, Illustrator and Inkscape are drawing interfaces that do not
provide easy ways to craft textures, SVGator is an animation tool
but does not support the animation of textures, and After Effects
only supports the dynamic masking or translation of static textures
as animation. Similar to these systems, filtered.ink also relies on
human-centered approaches for authoring. However, it extends
existing approaches by providing a way to both directly create and
animate the compositions of the textures as the user draws them.
This synthesis of embedded animation mechanisms within a fa-
miliar drawing interface introduces a fluid end-to-end experience
tailored for dynamic illustrations.

Using automated approaches can also result in rich vector-based
media, albeit at the cost of user control. These examples include
SVG-VAE [33], Im2Vec [40], Cloud2Curve [5], and Stylized Neural
Painting [57], all of which rely on learned models to reconstructs
vectors from an original raster graphic. For messier raster sketches
with small spaces between sketched lines, Delaunay subdivision has
been used for automatically coloring sub-regions [37]. Other meth-
ods operate solely within the vector space. DeepSVG [3] focuses
on animating existing SVGs by producing smooth interpolations
between one SVG and another, while temporal diffusion curves [32]
introduces a new type of vector graphic that captures the evolution
of strokes to achieve a wider variety of styles and effects for vec-
torized painting. These auto-generative approaches either excel in
imitation but not in freedom of expression or suggest new system-
specific file formats. filtered.ink also attempts to achieve raster-like
levels of fidelity but incorporates greater user autonomy into the
brush creation process.

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

2.2 Node-based End-user Authoring
Node-based editing of objects hails from historical prototypes such
as Sketchpad by Sutherland [48], where a light pen manipulates the
nodes that define vector-based shapes. More recently, it has been
used in texture rendering algorithms to manipulate procedural ma-
terial graphs. Some of these algorithms such as Hu et. al’s pipeline
[13] or MATch [44] train neural networks that require searching
through pre-existing procedural node graphs to find a best match,
while other strategies focus on semi-automatic generation to by-
pass the large data set requirement [14]. The resultant node graphs
can be further fine-tuned by a user to change material properties
such as roughness, color palette, or shininess.

Editing the generated materials and textures via a node graph is
similar to the block-based approach in visual programming, which
has been used in systems such as Scratch [41] and Blockly [9] to
help novices understand the semantic connections between pro-
gram state and output. In comparison to standard text-based pro-
gramming, this approach has been demonstrated to incite greater
learning gains and levels of interest in programming [54]. The vi-
sual metaphor of directly manipulating blocks is also particularly
well suited for visual environments such as drawing and design.
For example, Para [19] gives the user live manual control of declar-
ative constraints to enable non-linear editing to produce complex
procedural art. Similarly, Demystified Dynamic Brushes [30] links
state to visual outputs so that users can control program execution
through direct selection and Object-Oriented Drawing decomposes
drawings into UI objects to be manipulated through direct touch
[55]. While our work is similar to these end-user authoring systems
by providing similar controls to produce visual outputs, we aug-
ment them by providing the additional ability to animate program
states. These states are also preserved in the standalone SVG file
that is exported from our system and can be rendered on all modern
browsers and applications that support SMIL animation.

2.3 Dynamic Illustration
Motion within a static image, as opposed to short videos, can con-
vey unique contextualized messages and emotions via dynamic
visuals. To better understand the patterns that elicit these messages,
previous studies have introduced design spaces for animated narra-
tives [45] to provide useful guidelines to direct these animations.
Other works have focused on improving ways vector-based an-
imations in drawing are presented. For example, to avoid visual
crowding when animations are scaled to smaller screen sizes, re-
targeting algorithms can preserve spatial detail and appropriately
redistribute elements based on importance [43]. To better convey
emotional expressivity, temporal flickering has been suggested.
While flickering may seem like an undesirable artifact to some,
adding controllable temporal flickering allows digital animation to
mimic the raw quality of traditional, hand-colored ones [7].

Many authoring tools have also been created to help artists di-
rectly craft these dynamic illustrations. Draco [23] demonstrates
the appeal of illustrations with kinetic textures and shows that
continuous animation effects on standalone elements juxtaposed
with still backgrounds can help designers create non-disruptive
ambient motions. Kitty [22] pushes this further by introducing an
underlying graph model to capture visual, spatial, and temporal

relationships between drawn objects, and Druid [24] allows users to
remix a set of motion amplifiers, based on preexisting 2D animation
principles, for rapid iteration. In these systems, however, the user
workflow involves sketching the static elements first and animat-
ing post-hoc by delineating motion paths or interaction patterns
after. They also export to raster GIFs instead of vector graphics.
filtered.ink is instead built on top of vector graphics and exports to
SVG, thus enjoying the post export edit benefits of the vector format.
While the resulting dynamic illustrations may be visually similar,
our workflow also differs by enabling animation as a first-class ob-
ject. As dynamic motion can be embedded as a filter transformation
within the brush of the user, we support a workflow experience that
extends traditional drawing methods with animation to provide
minimal disruptions to an artist’s natural drawing process.

3 FILTERED.INK
Our system design is informed by strategies for augmenting cre-
ativity through exploration and exemplars [28, 46, 47] and uses
themes from existing tools for node-based authoring and dynamic
illustration to empower interactions for artists to craft, manipulate,
animate, and share SVG filters.

3.1 SVG Filters

Figure 2: Left: An SVG of a trump card without any filters
applied. Middle: The SVG with a filter combining feTurbu-
lence, feDiffuseLighting, and feComposite primitives applied
to the background generate a paper-like texture. Right: The
SVGwith a filter combining feTurbulence and feDisplacement
primitives applied to the diamonds to generate blur.

An SVG filter, also known as shaders in computer graphics, is a
series of graphical transformations that can be applied to return
bit-mapped results. It was first introduced in 2012 by the World
Wide Web Consortium (W3C) to enable different rendering effects
for SVGs, but can also be applied to any source graphic. The SVG
filter output differs from that of traditional raster graphics as it
is dynamically recomputed at each rendering resolution and thus
the image retains high quality and fidelity. These filter transforma-
tions are defined with a <filter> tag, after which sets of elements
called primitives with tunable parameter values can be sequentially
composited to create different visual outputs, including imitating
realistic textures or artistic styles (see Figure 2). With the current
SVG 2 specifications, there are 17 possible filter primitives: feBlend,
feColorMatrix, feComponentTransfer, feComposite, feConvolveMa-
trix, feDiffuseLighting, feDisplacementMap, feDropShadow, feFlood,
feGaussianBlur, feImage, feMerge, feMorphology, feOffset, feSpecu-
larLighting, feTile, and feTurbulence [35]. Multiple filters containing
different permutations of primitives can also be defined within

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

the same SVG file and differentiated between via IDs. These fil-
ters can then be applied to SVG elements by adding an attribute
filter="url(#name-of-filter)" to the SVG element. Currently,
all major browsers support SVG filters and there are several online
editors for SVG filters [2, 17]. However, these interfaces remain dif-
ficult to maneuver, do not apply the filters in an illustration context,
and do not support animation.

3.2 Design Considerations
Informed by prior work, our vector-based drawing tool aims to
augment the visual expressiveness of vector-based dynamic illus-
trations while preserving their benefits of infinite scalability, post-
export texture and animation modification, and non-linear editing.
Guided by two Shneiderman design principles for general creativ-
ity support tools [46], 1) support exploratory search and 2) enable
collaboration, we explore the following two ideas in our system,
targeting experienced artists but coding novices.

3.2.1 Learning curve via visual metaphors and abstraction.
SVG filter authoring in existing vector drawing software involves
either manually typing out the SVG filter code or tuning filter prim-
itive parameters. To understand the benefits and challenges of both,
we ran a qualitative pilot study on an earlier iteration of the system
that employed both the manual code entry and parameter tuning
strategies with 3 hobbyist digital artists. These artists were invited
to explore both interfaces through 20 minute think-aloud sessions
and interviewed about their experience afterwards. All three users
preferred parameter tuning, but still felt that the learning curve
was too high and not conducive to the exploration of different po-
tential output effects. One user commented that filter-editing was
“not visual enough” and thus was confusing to understand. This
comment aligns with insights from previous work that called for
developing efficient workflows that align with how artists natu-
rally worked visually [18, 31]. Our final system thus incorporates
greater visual abstractions and metaphors to better accommodate
the artist’s mental model.

3.2.2 Expressiveness via sharing and remix. Repeated expo-
sure to other examples has been demonstrated to improve the qual-
ity of creative work through inspiration [28, 47]. Remix, defined as
the process of taking existing artifacts created by someone else to
combine or manipulate into new cultural blends [26], is an exten-
sion of this idea and has also been commonly used to generate new
art. For example, in cases where the user is less familiar with ani-
mation techniques, crowd workers have been motivated to create
re-mixable interactive behaviors and achieve “creative evolution”
by inheriting, modifying, and adding features [29]. Previous studies
into this combination of creative input from multiple generations
of contributors have suggested that crowd-based design [56] is
more effective than individually created ones. By supporting the
sharing and remix of SVG filters, our system thus encourages users
to interact with a multi-sourced continuous stream of references to
incite greater varieties of output compositions.

As vector hypermedia such as dynamic SVGs are not commonly
used in illustration, artist interactions with SVG-based, and by ex-
tension vector-based, drawing tools with learning curves have yet to

be thoroughly explored. Understanding the workflow of how users
create, manipulate, or remix these SVG filters using filtered.ink can
reveal important insights into how subsequent similar systems can
be further refined to accommodate evolving user mental models.
We argue that this is a uniquely vector workflow, as modifying
filters or illustrations from other artists directly from the output
without any accompanying source files cannot be achieved in raster.
Exploring the potential visual outputs this medium can produce
through these workflows can also reveal potential directions for
future development of additional visual effects. Thus, we use fil-
tered.ink to explore the following two research questions:
Q1. What are the natural workflows that users follow when cre-

ating illustrations with SVG filters?
Q2. How do filters, as part of the structure of vector graphics,

inform users’ choices of style in dynamic vector illustration?

3.3 SVG Filter Editor
The SVG filter editor uses visual abstraction to organize different
components of SVG code into distinct modules to encourage user
exploration, as demonstrated in Figure 3. In this figure, artists can
manipulate the underlying code, which is hidden unless they inspect
the web DOM, through modules on the editor interface. These
modules are A) the composition of SVG filter primitives, B) the
tunable primitive parameters, and C) the animations that can be
applied to each parameter. On this editor, the user can also see a
live preview of the filter they are currently designing as they make
changes, as well as delete or upload the filter to a global database
to share with other creators.

3.3.1 Primitives. For simplification, since our tool focuses on
drawing and only uses SVG polylines as the source graphic, we
do not include feImage since it maps an input image to an output,
feOffset since it only shifts an input, which can be achieved by
drawing in a different location on the canvas, feMerge since sim-
ilar effects can be achieved by modifying filter order, and feTile
since it only tiles smaller inputs to an output. We include the re-
maining filter primitives to achieve pattern generation through
Perlin noise (feTurbulence), pattern blending (feBlend, feComposite),
pattern perturbation (feMorphology, feDisplacementMap, feDrop-
Shadow, feBlur), convolutions (feConvolveMatrix), color mapping
(feColorMatrix, feComponentTransfer, feFlood) and lighting effects
(feDiffuseLight, feSpecularLight). For these primitives, we use a node
graph representation to depict the relationships between each filter
in the composition, as illustrated in A of Figure 3.

Our node graph is a re-interpretation of the original stack-based
structure of the SVG filter primitives. In the original structure,
primitives are added sequentially and parsed in the reversed order
that they were added. Certain primitives such as feTurbulence and
feFlood that do not take inputs will override the effects of previous
primitives. These overridden primitives remain in the filter code
despite not contributing to visible effects and may incite confusion
when users are inspecting the filter. To remedy this confusion, we
visualize the filter stack as a node graph instead where each node
represents a filter primitive and directed edges from some node𝐴 to
a node 𝐵 indicates that the result of primitive𝐴 is fed into primitive
𝐵 as its input. The “active” set of primitives, or the primitives whose
outputs are eventually fed into the last primitive in the stack, are

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

C

C
c

Underlying Code
Editor Interface

 <�lter> Edit Filter
<feTurbulence

A
baseFrequency=".02 .02"
in="SourceGraphic" Name: moss Reset Delete Primitive PRIMITIVES IMPORT
numOctaves="4" Input Ink

result="noise"
type="fractalNoise" Preview A Combine
seed="7" /> + BlendTurbulence

<feMorphology
in="noise" + Composite

operator="dilate"
radius="1" Change color

Morphology
result="dilated" /> + Color Matrix

<feConvolveMatrix
+ Component Transferin="dilated"

kernelMatrix="1 1 1 1 2 1 1 -9 1" ConvolveMatrix + Flood
preserveAlpha="true" B
result="m1" /> onfigure ColorMatrix Lighting

<feColorMatrix B + Diffuse Light
in="m1" onvert R, G, B, and A to new values by ColorMatrix

result="m2" hanging edge weights. ANIMATE + Specular Light
values=".4 .8 .6 0 0

 1 1 1 0 0 R Distortion
 .1 .2 .3 0 0 R

+ Turbulence
 0 0 0 0 1" /> G

 <animate G + Morphology

C attributeName="values" B + Displacement Map dur="1" B
 values="1 1 0 0 0 0 1 0 0 0 + Drop Shadow

 0 0 1 0 0 0 0 0 1 0; A
 .4 .8 .6 0 0 1 1 1 0 0 A + Blur

 .1 .2 .3 0 0 0 0 0 0 1; C + Convolutions
 1 1 0 0 0 0 1 0 0 0
 0 0 1 0 0 0 0 0 1 0"

attributeType="XML"
Delete Filter Upload Filter to Presets CloserepeatCount="inde�nite">

 </animate>
 </�lter>

values

Animation Duration: 1s

add
state

remove
state

C

Figure 3: The underlying SVG code (left, highlighted in green) is abstracted through the filtered.ink editor interface (right).
The editor interface uses A) a node graph representation to depict the connection between filter primitive inputs and outputs,
B) visual abstraction to illustrate the operations performed by the filter, and C) a clock representing animation states for
parameter values. In this example, values in the feColorMatrix filter are represented as edge weights in a bipartite graph.

Figure 4: Left: The underlying abridged SVG code with the original stack data structure and the node graph data structure
visualized by our interface. Primitive C is highlighted because it does not take an input so its output overwrites previous
primitives. Right: When the user clicks on primitive A, the highlighted “active” set of primitives switch on the node graph. In
the code, this involves moving primitive A and subsequent primitives associated with its output to the bottom of the stack.

highlighted in blackwhile the overridden “inactive” set of primitives
are rendered in light gray. The user can add, delete, and move nodes
and edges to modify how the filters interact with each other as well
as switch to a different active set of filters by clicking on the grayed
out nodes, as demonstrated in Figure 4. This moves the clicked
primitive with its subsequent associated primitives to the bottom
of the stack to render their effects.

3.3.2 Primitive Parameters. After the user clicks on a node, the
parameters of that primitive are visualized on a panel to the left of
the node graph, as depicted in B of Figure 3. To better complement
the visual workflow of the artist, we abstract away the actual code
of the filter in place of visual representations. An example of one
such abstraction can be seen in the figure, where the edge weights
of a bipartite graph are used to represent matrix values in the values
parameter of the feColorMatrix filter. The values in feColorMatrix

original �ltered.ink

A

B

C

code

A

B

C

<�lter>
<feTurbulence

in="SourceGraphic"
result=”A”/>

<feMorphology
in=”A”
result="B" />

<feTurbulence
in=”SourceGraphic”
result=”C”>

</�lter>

click A

original �ltered.ink

A

B

C

code

A

B

C

<�lter>
<feTurbulence

in=”SourceGraphic”
result=”C”>

<feTurbulence
in="SourceGraphic"
result=”A”/>

<feMorphology
in=”A”
result="B" />

</�lter>

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

are used to apply a transformation matrix that converts existing
RGBA values from the input to new ones in the output. Visually,
the more opaque each edge is, the more one color channel in the
original color scheme contributes to the color channels in the new
color. Similar visual metaphors are applied to other filter primitives.

3.3.3 Animation. filtered.ink relies on W3C recommended SMIL
3.0 for filter parameter animations. Using this specification requires
the user to provide the parameter to animate, the duration of the
animation, and the values the animation cycles through. This type of
authoring paradigm falls under the category of keyframe animation,
where properties of objects are specified at certain points in time
as keyframes, then frames between the keyframes are produced
from tweening, or interpolating between the properties [50]. We
select declarative keyframe-based animation over other paradigms
such as procedural animation as prior work has demonstrated the
former’s ability to enable faster animation creation [27].

For simplicity, we restrict the animation to infinite loops through
user-determined values. This is visualized in C of Figure 3. In accor-
dance with the goal of visual metaphors, we abstract code away in
favor of a colored clock divided into 𝑛 chunks representing 𝑛 values
to cycle through for that parameter over the specified duration, sim-
ilar to a timeline in standard keyframe-based animation. Clicking
on each chunk populates the primitive parameter visualizer (B in
Figure 3) with the values of that state, allowing the user to update
parameter values using the familiar visual abstraction.

During editing, a live preview of the animation plays in the “Pre-
view” section of the interface. A clock hand cycles through chunks
with speed dependent on the user-specified animation duration for
one completed cycle. Since the two are synced, the user can gain a
notion of how changing parameter values directly influences the
visual output, encouraging them to explore how parameter values
of different filter primitives can generate a variety of visual effects.
For example, animating the scale parameter in feDisplacementMap
can make lines pulsate like rippling water. Animating the values
parameter in feColorMatrix can make colors flicker.

3.4 Drawing Interface
The drawing interface, depicted in Figure 5, features a toolbar with
common drawing tools such as pen, fill, color dropper, move, undo,
redo, erase, import, and download, in addition to SVG-specific tools
such as change filter. Users can draw directly on the canvas below
the toolbar with their mouse, tablet, or by holding down the D
key and moving their cursor. The sidebar on the left features the
currently active SVG filters and the metadata of the most recently
drawn or currently selected brush stroke. Importing a previously
downloaded drawing will repopulate the sidebar with the filters
used in that drawing. After users finish designing a filter, they can
either directly start drawing with the filter applied as a brush or
apply the filter to an existing SVG element on the drawing interface.

We enable cursor drawing by tracking mouse coordinates and
mapping them to SVG polyline points. If a transformation is selected
on the sidebar, we additionally pre-apply it to the stroke so that the
effects can be seen as the stroke is being drawn. Each time a new
stroke, or polyline, is drawn, we store the coordinates, color, width,
opacity, time the stroke started, time the stroke ended, its associated
SVG filter transformation ID, and a unique creator ID. To optimize

performance, we simplify the polyline using a combination of the
Douglas–Peucker and Radial Distance algorithms [1].

3.5 Remix Affordances
As remix has been previously demonstrated to improve creative
outcomes by providing inspiration and encouraging learning by
example [28, 47], we were interested in examining remix behaviors
specific to SVG filters. Thus, we added support for three types of
remix: 1) remixing filter parameters, 2) remixing filter primitives,
and 3) remixing the filters that are applied to strokes, as demon-
strated in Figure 6. After selecting a filter from a list of presets, the
user can either remix the filter directly or click on a “Remix” button,
which clones it before opening up the filter editor. Then, they can
make small adjustments via parameter tuning or rearrange the filter
primitive node graph to make visually larger disparate effects. They
can choose to upload these transformed filters as new “presets” to a
global database, by clicking on the “Upload Filter to Presets” button
in the filter editor. Other users on the application can then browse
through these preset filters, import them, and remix them for per-
sonal use. Users can also remix the filters applied to strokes on the
drawing interface. To help with this decision-making process, we
include a gallery of entire drawings with pre-applied filters so users
can import them to see which filters are used in tandem with what
kinds of drawn objects. They can then replicate or remix this idea
into their own illustrations.

4 EVALUATION
We conduct a usage evaluation for filtered.ink to 1) understand the
natural workflow of how users create dynamic illustrations and 2)
examine how filter usage may inform, affect, or modify the styles
of vector illustration. We also assess the application’s conceptual
clarity, usability, possibilities, and limitations. By examining the
interactions and creative potentials of users when drawing with
their own crafted filters as brushes, we can derive insights into
designing future iterations of vector-based illustration applications.

4.1 Participants
Nine participants took part in the study (6 female, 1 male, 2 non-
binary), aged 20 to 22 years old (average 21). All participants had
been creating art in some capacity since childhood and actively
produce digital artwork for either a publication, professional prac-
tice, schoolwork, or recreation. Three were studying illustration in
university. Four participants had experience with coding, while five
had introductory or no experience at all. Participants were recruited
from the researcher’s own artistic network, as well as from illus-
tration teams from digital campus publications. The participants
were all students from two neighboring universities, one of which
focuses on art. Eight of the nine participants listed Procreate, Photo-
shop, and Illustrator as the applications they currently use to draw
with, with the former two used predominantly for digital painting
and the latter for design. Every participant listed PNG as their usual
file format of choice for their artwork. No participants had any
prior experience or knowledge about SVG filters. Each participant
received a cash compensation of $25 for their participation.

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

help gallery filtered.ink: Illustrations hardworkingCaribou5Animated

Optimize

static

Edit Remix

pencil

Edit Remix

glow

Edit Remix

moss

Edit Remix

watercolor-spelled-correctly

Edit Remix
{"coords":
[-345,-76,-340,-86,-330,-97,-317,-108
,-291,-122,-278,-124,-257,-123,-243,-
122,-222,-116,-215,-112,-212,-110,-21
0,-103,-209,-84,-222,-61,-233,-35,-23
4,-28,-232,-14,-227,-9,-220,-6,-211,-
4,-200,-5,-188,-13,-177,-24,-166,-44,
-165,-43],"color":"#8F7272","width":4
,"idCreator":"hardworkingCaribou5","i
dStroke":10,"status":1,"idMovedFrom":
0,"created":1,"timeStart":16632591941
31,"timeEnd":1663259194931,"filterID"
:"empty","opacity":1,"fill":false}

Size

4
Color Opacity

1 Toolbar

Open �lter editor

Duplicate �lter to remix

Displays metadata of most recently drawn
stroke

Toggle �lter visibility

Randomly generated username

Add new �lter

Ink Pick
Color

Change
Filter

Move to
Front

Erase Undo Play
Zoom

Import
SVG

Fill Change
Color

Move Move to
Back

Redo Erase
All

Download
SVG

Figure 5: The drawing interface features a toolbar with common drawing tools, the canvas, a list of active SVG filters, and
metadata about the most recently drawn stroke.

Figure 6: Examples of the three types of remix enabled by our system. Users can 1) create an aluminum foil filter from paper
by increasing the surface height parameter of the DiffuseLight primitive, 2) create a concrete filter from paper by adding a
SpecularLight primitive, or 3) create a different style by replacing the pencil filter on the flower with a watercolor filter.

4.2 Study Protocol
We perform our evaluation via a task-based usability study with
semi-structured interviews for user modeling, and record inter-
action logs to capture habits users adopt when creating vector
illustrations. The study was conducted using a Huion H420 Pen
Tablet, mechanical keyboard, and 1920x1080 monitor. Each par-
ticipant was asked to bring into the study an existing illustration
they’d made on another digital platform to encourage user focus
on the creative medium instead of devoting attention to the sub-
ject matter of the illustration. Informed by prior work that found

learning instances to be greater in specific tasks in comparison to
open-ended exploration [42], we constrained the participants to
tasks that asked them to recreate existing filters and illustrations
(rather than creating from scratch) to focus on participants’ abili-
ties to understand and integrate filters into their existing workflow
and art styles. The evaluation period lasted 80 minutes for each
participant, and consisted of the following steps.

4.2.1 Introduction (5–10 minutes). Participants filled out a
background questionnaire about their experience with art, cod-
ing, and vector graphics. Each participant was then given a brief

Aluminum Foil

Paper

Turbulence

DiffuseLight

Turbulence

DiffuseLight

Surface Height = 2

Surface Height = 25

1) Remixing �lter parameters

 Concrete

Paper
Turbulence

DiffuseLight

Turbulence

DiffuseLight

SpecularLight

2) Remixing (adding) �lter primitives 3) Remixing �lters applied to strokes

Paper Paper

Pencil Watercolor

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

overview and demonstration of the application, including its gallery
of preset filters and completed drawings. The facilitator walked
each participant through the interface and the functionalities avail-
able on the platform, demonstrating steps such as selecting preset
filters, creating a new filter, adding primitives, and customizing
effects. Participants were encouraged to try out the interface for
themselves and get comfortable with the setup, as well as narrate
their thought processes out loud.

4.2.2 Task 1: Filter Creation (15–20 minutes). Participants
were asked to select an existing preset filter they liked from the list
of pre-made filters and recreate it. The exercise covered the discov-
ery of a desired visual effect, the creation of a filter from scratch,
the procedures and learnability of adding primitives, customization,
and feasibility of mimicking that desired effect. Participants were
prompted with the preview of the target preset filter on the preset
drop-down list as well as with their set of active filters on the filter
sidebar, which they could refer to and utilize at any moment. They
were prohibited from entering the preset filter’s editor to view how
the preset had been created. The facilitator did not intervene unless
the participant had trouble using the system, and a time limit of
20 minutes was imposed. The purpose of this task was to observe
whether the participants could easily reproduce a target effect.

4.2.3 Task 2: Free-form Drawing (35–45 minutes). Partici-
pants were asked to recreate the illustration that they had brought
in using filtered.ink. Participants were encouraged to utilize and
integrate filters into their workflow and artwork in whatever way
they saw fit or was intuitive to them. Once done with their artwork,
participants were asked to fill out a post-study questionnaire to
provide feedback about the application. After the questionnaire, we
conducted a semi-structured interview to understand the artists’
thought processes and their overall experience of the system.

5 RESULTS
5.1 Supporting Natural User Workflow
We map a new user’s natural creative workflow via interaction logs
recorded throughout the tasks, as depicted in Figure 7. In this plot,
“drawing” interactions refer to instances whenever a participant
drew strokes on the canvas, while “filter editing” interactions refer
to instances whenever a participant changed filter parameter values
or edited filter animations. Filter editing primarily occurred in the
beginning during the filter creation task. However, when the filter
creation task concluded, most participants continued to edit filters
during the free-form drawing task, where they had more freedom
to work in ways more intuitive to them. After an uninterrupted
filter editing phase, participants changed their workflow to focus on
predominantly drawing on the canvas. However, most participants
still returned to the editor to make short bursts, or clusters, of filter
modifications. These observations imply that there could be a shift
of mental models from creative to technical and vice versa that
occur when artists switch between the two tasks.

5.1.1 Designing Filters. As they were designing filters for the
first time, all participants initially relied on blind experimentation
when attempting to understand what each filter primitive could do
and how to achieve their desired effects. They would employ trial

Time F
rom St

art (mi
n)

Participant Interactions Over Time
80
60
40
20

0 P1 P2 P3 P4 ParticipantsP5 P6 P7 P8 P9

DrawingFilter Editing

Figure 7: Instances where participants were drawing and edit-
ing the filters. The colored backgrounds refer to the average
time taken for each task (green: introduction, yellow: task 1,
red: task 2). Filter editing generally occurred in a large phase
near the beginning, after a bit of drawing but before a large
amount of drawing. But filters were lightly edited during the
drawing for most participants.

and error, clicking on each primitive to preview its visual output
before application, then repeating this process with different com-
binations of primitives and primitive parameters. When comparing
this exploration process against those in similar existing systems,
P7 stated that “the learning curve of this is much lower than other
vector art applications.” However, participants still found certain
visual abstractions to be more intuitive than other ones. In partic-
ular, most found the feConvolveMatrix primitive intimidating to
create from scratch. To accommodate for these spikes in difficulty,
there was a notable reliance on remixing existing filters without
facilitator prompting, especially for participants with less coding
backgrounds. P3 explained, “I don’t know what a lot of the primi-
tives mean, so the presets were easier to use and alter, rather than
start from zero.” The provided presets on filtered.ink thus became
an integral resource, both as a list of examples to demonstrate what
the platform is capable of and as a palette of starting points for users
to customize to their own needs without having to make something
from scratch. P2 related this feature to her own artistic practices
on existing drawing platforms, “I always like to use preset brushes.
So much time and thought goes into making them.” To remix these
presets, all participants started by tuning the filter parameter val-
ues to make minor adjustments. While some were satisfied enough
with the results and moved on to drawing, others continued to add
filter primitives to the node graph and experimented with different
connections between different nodes. Generally, those who contin-
ued to this second type of remix (P1, P2) used greater numbers of
total remixed filters in their subsequent illustration.

In the beginning, if the filter was originally static, participants
usually added animations after they were completely satisfied with

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

Figure 8: Final participant illustrations created using filtered.ink. Some participants used filters to emphasize environmental
elements (e.g., rain and fog in P6), while others used them to create subject emphasis (e.g., tears in P9).

the static version of the filter and did not touch non-animation
related elements again. Some participants who had less experience
due to the “inaccessibility and big learning curve of existing anima-
tion tools” (P5) felt that filtered.ink’s simple clock-based looping
animation worked as a gateway into animation, that “it’s easier
than key-framing and adding a Gaussian Blur and exporting it to
a GIF.” To understand what is happening, participants stated that
they would shift their gazes back and forth between the rotating
hand that passed over different primitive parameter states and the
live preview to match parameters with their direct visual outputs.
In particular, P6 stated that this made them more confident to ex-
periment, “It’s more intuitive to use initially. If you’re an illustrator
without a background in animation for web design, this is really
helpful. There’s no added burden of having to learn how to code.”
These participants, after greater familiarity with what the anima-
tion function does, were comfortable enough to alternate between
editing the static and animated aspects of the filter. During the
subsequent semi-structured interview, all participants confirmed
animation to be one of the greatest strengths of filtered.ink and
what set it apart from all existing drawing applications. P7 also
mentioned the potential of animated vectors to be “great for use
in texturing for 3D models and movie applications,” pointing to
the potential to recycle math-based animations for game assets. P5
was excited about using animated SVGs in illustrative typography,

suggesting, “instead of having to export each animated letter form
as a GIF, having an animated SVG would save much more space
and be infinitely resizable for every publishing platform.”

5.1.2 Drawing with Filters. When drawing, participants relied
heavily on features that matched those of existing creativity support
tools. P7 specifically stated that, “I’m imparting my knowledge of
Photoshop and Procreate onto this” when navigating both the filter
editor and the toolbar on the drawing canvas. They immediately
understood what common functions such as the eyedropper, fill,
erase, and color tools did, and tried out the SVG-specific functions
that they were less familiar with first. Participants also pointed
out their desire for additional functionality that have become stan-
dard on most other popular drawing platforms such as resizing,
polygonal shape tools, and a more robust selection tool. The lack of
these small functionalities was cited as the biggest inhibitor to them
immediately adopting filtered.ink into their existing workflows.

Participants fell into two categories of filter integration in their
drawing process. Some participants first drew a skeleton of their
illustration with standard non-filtered brushes, and then applied
filters afterwards either with filter brushes or by using the “Change
Filter” tool to convert existing non-filtered strokes into filtered
strokes. We noted that these participants were not always satisfied

P1 P2 P3

P4 P5 P6

P7 P8 P9

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

with their first choice of filters, and instead toggled between 3-4 oth-
ers before deciding on a final one. Other participants drew directly
with the filters themselves. Participants that first drew with non-
filtered strokes mentioned that it was difficult placing an animated
stroke where they wanted it to be given its movement, “so it was
better to draw first and then click and choose what part I wanted
to be animated” (P9). Participants that drew with filters directly felt
that it was more important to see the end result as they drew, “It’s
useful to just draw with the pizzazz itself” (P6). These participants
seemed more intentional with their filter choices and did not remix
the filters applied to strokes as often as the previous group. Either
way, both groups of participants were working with frameworks
of existing drawing platforms that they were accustomed to in
mind; those who preferred static, unadorned strokes usually work
with print or comics, while those who preferred animated, textured
strokes create animations and other forms of dynamic digital art.

Two participants also naturally gravitated towards the “Import
SVG” function, expressing that this would be really beneficial to
current digital creators and communities that already work a lot
with the vector graphics but do not have tools to generate textures
or animations. These participants would upload the filters they
designed so that others could re-adapt them in their own artworks.
Other participants who did not upload stated that they felt the
filters they crafted weren’t “unique” enough, but were willing to
upload if they designed one they were satisfied with. However,
both expressed concerns about whether the platforms, browsers,
and mediums that they publish work on would be compatible with
displaying SVGs. Many online publications that they illustrate for
only accept standard raster image files like PNGs and JPGs, and
they wished SVGs were more universally used.

5.2 Filter Effects on Aesthetic Style
The participants’ final drawings can be seen in Figure 8. Despite
limited experience working with vector graphics and no knowledge
of SVGfilters prior to using the system, all of the participating artists
were able to incorporate filters to recreate their illustration and
enhance it in a novel way. Seven of the nine participants, when
given the opportunity in the last free-form activity to draw and
edit filters freely, either remixed or created new filters that they
liked enough to incorporate into their final drawing compositions.
A breakdown of the filter distributions per drawing is in Figure 9.

We decompose each participant drawing into strokes and map
their distributions by filter type in the first graph of Figure 9. All 9
participants incorporated animated filters into their drawings, while
only 2 participants incorporated static filters. This observation is
reiterated by P4, “Animations are the coolest part, because the static
effects can be achieved using existing brushes on other applications.”
Since the participants were familiar with raster-based tools for
creating visual effects and patterns in drawing, they stated that the
ability to animate rapidly in-situ was the most impressive thing
about the system. This finding indicates that although artists are
cognizant of the latent benefits of vector graphics such as scalability,
visual benefits seem to be more greatly valued.

Drawings with more than 200 strokes have a smaller percentage
of strokes filtered (𝑁 = 5, 𝑥 = 14.4%, 𝑠𝑑 = 5.5%) in comparison to
drawings with less than 200 strokes (𝑁 = 4, 𝑥 = 59.3%, 𝑠𝑑 = 29.7%).

0 100 200 300 400 500Number of Strokes

P1P2P3P4P5P6P7P8P9

Stroke Distribution by Filter TypeAnimated Filter Static Filter No Filter

0 1 2 3 4 5 6 7 8 9Number of Filters

P1P2P3P4P5P6P7P8P9

Filter Distribution by Creation TypeNew Remix Preset

Figure 9: The first graph shows strokes separated by filter
type. A higher percentage of strokes are filtered in drawings
with less than 200 strokes total in comparison to drawings
with more than 200 strokes total. The second graph shows
filters separated by how the filter was created. Most partici-
pants remixed filters while only two stuck with preset filters.

In the former more complex drawings, animated filters are used
sparingly to highlight particular facial features (hair in P2, blush in
P3, tears in P9) or to bring environmental elements to life (flower
petals in P2, clouds in P3, rain and fog in P6). This style resembles
that of the cinemagraphs in Cliplets [20] and the kinetic textures of
Draco [23]. Conversely, in the latter drawings with less strokes, the
filters are evenly distributed across different objects in the scene and
used to convey the characters of these objects. For example, in P1’s
illustration, the entire body of the alien receives a stringy, pulsating

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

filter alluding to its strangeness, the moon receives a rough filter to
mimic its porous texture, the clouds receive a static-like filter that
slowly moves up and down to evoke the feeling of floating, and the
fire of the rocket receives a wispy filter that resembles smoke trails.
This style is more reminiscent of the scenes from “Loving Vincent,”
which uses a laborious paint-on-glass animation technique [52].

The second graph of Figure 9 contains a breakdown of the filters
in each drawing by how they were created. Two participants (P4,
P9) only used preset filters while two other participants (P1, P3)
only relied on filters they remixed from the presets. Interestingly,
the participants who solely relied on presets also ended up with
comparatively more complex drawings, or ones with more strokes.
This correlation could imply that they were not yet comfortable
enough with the filters in general to incorporate them into the
composition. The rest of the participants employed a mixture of
new filters they crafted from scratch, remixed filters, and preset
filters. Given the time allocation of 30-35 minutes, participants who
designed their own filters from scratch were only able to create
at most one new filter for their drawing. These participants also
had final drawings with comparatively less strokes, indicating that
creating these filters from scratch was time consuming.

6 DISCUSSION
Vector-based authoring and dynamic illustration tools tradition-
ally separate the workflows for drawing [11, 16, 38] and textur-
ing/animation [3, 17, 49]. We demonstrate that instead of keeping
them distinct, synthesizing the two processes within the context
of a single drawn brush stroke through the “filtered ink” metaphor
provides a compelling and fluid experience for the user. Some partic-
ipants attributed this enjoyment to animation, “the fact that it [the
SVG stroke] could move on its own is so cute. It looks like it’s living”
(P8). Others liked “the ability to texture vector images. Because the
current process is so tiring, you don’t see that around in a lot of
vector art” (P7) and described the authoring style as “nostalgic” (P3),
which they noted was rare in vector-based software.

Informed by existing block-based authoring tools that helped
novices draw connections between technical program states and
visual outputs [9, 19, 41], we primarily relied on node graphmanipu-
lation and parameter tuning in our filter editor. This representation
was successful, as participants with a primarily illustration and little
programming background found the application to be an accessible
introduction into creating vector-based dynamic illustrations, with
one participant noting their willingness to continue to use it post-
study to incorporate more vector art into their current portfolio.
However, the entirety of the learning curve could not be mitigated,
as filtered.ink, similar to other systems within the design space of
computational brushes and dynamic illustrations [22, 23, 25, 30],
coerces the artist to deviate from their pre-established traditional
workflows with its introduction of textures and animations that
can modify strokes. There is no clear “grammar” describing how
these elements interact and could be authored. Thus, we identified
patterns in how participants interacted with the unfamiliar medium
of an animate-able computational brush during our user study in
an attempt to create this grammar. While these observations were
made within the scope of a node graph technical drawing tool,
we believe they are useful in informing the experiences of similar

vector-based or technical creative systems that expose live code
or programs, and summarize them into a four-part user model: 1)
Users are motivated to explore and use a new system by seeing
immediate inspirational examples (see). 2) They want to create
something, but still rely on knowledge from prior mediums (want).
3) As they explore the system, they adjust their mental models to
accommodate new possibilities (rewant). 4) To actuate new visions,
users mix familiar techniques and outcomes with new ones created
by others using the system (remix). We additionally provide exam-
ples and implications of each stage and summarize them in context
within other studied artist-technical tool relationships.

6.1 See: Artist motivations and actions are
guided by immediate inspirational visual
stimuli.

Participant choices with filtered.ink were directed by recent visual
examples that were personally appealing to them. For example,
when selecting presets to use and recreate in Task 1, they mostly
gravitated towards the animated ones: “The animation part is the
best feature and what makes it unique; I work with print mostly.
It could be useful for graphic design people.” (P9) This suggests
that the unique ability of SVG filters to enable both the creation
and fluid transfer of motion from one drawn motif to the next was
most motivating for users. Similar sentiments were shared by other
participants, and this influence was reflected in the artworks they
chose to create. At their own discretion, all the participants either
directly included their recreated filter or a variation of it in their
final illustrations. Outside of animation, some participants were
attracted to the style afforded by the textures from filters, which re-
introduced traditional raster-like aesthetics to the vector space. P5
mentioned that “It’s interesting that it’s a very painterly tool which
isn’t the case with other vector tools” and this novelty motivated
them to more deeply explore filter combinations that could portray
similar effects in their illustration.

The benefits of visual examples for providing inspiration have
been previously explored [21, 28, 47, 53] and calls have been made
for tools to facilitate the retrieval, storage, and dissemination of ex-
amples [12]. Many existing SVG tools also feature examples within
external galleries or demos to motivate the user through exem-
plars that demonstrate the possibilities of vector [16, 38, 49]. How-
ever, as the immediacy at which individual users experience these
community-curated, and thus unstructured, examples vary, we em-
phasize situating interactions with inspirational examples directly
within the workflow of the creative tool if immediate action is de-
sired. We note that immediate visual stimuli may lead to direct
imitation and fixation, however, commonly presented as the an-
tithesis of creativity. We argue that in this instance, fixation is
not necessarily undesirable and can contribute to a greater user
motivation to immediately jump into a technical creative tool.

6.2 Want: To achieve novel desired visual
outputs with new tools, artists initially still
rely on familiar traditional methods.

Participants initially retained their familiar mental models when
interacting with the system. Most participants (P1, P2, P3, P4, P5, P8,

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

P9) preferred the traditional approach of drawing in plain strokes
then applying animated or textured SVG filters post-hoc instead
of directly drawing with them. They cited the reason as familiar-
ity with their original workflow of drawing and animating/post-
processing separately. This separation is complemented by the node
graph workflow as designing stacking SVG filter primitives with
clear inputs and outputs visually reinforced the idea that filters
are embellishments applied to strokes. Participants described that
drawing with motion is distracting, with P4 stating that “it’s clearer
to draw a shape down and apply a filter to it. [Animated] filters
are a bit difficult to see the edges of.” This reliance on traditional
methods is similarly reflected in their mental models of SVG or
vector-based elements. P1 stated, “Filters would be a secondary add-
on because the artistic concept comes first,” implying that textures
and animations are not natural parts of the artistic concept. This
sentiment is reiterated by P2, who compared filters to “the icing
rather than the cake” and is consistent with the traditional practices
in digital art of using line art to reduce forms into their most sim-
plistic representations before adding embellishments. Without any
modifications to the strokes, viewers are able to focus on the mass
and volume of the subject. In this sense, although an SVG-based
drawing system introduced a way to draw animations directly, most
artists did not initially take advantage of this due to the interaction
functioning as the antithesis of familiar line art. However, there
were two participants (P6, P7) who preferred drawing directly with
animated brushes. When prompted, these participants cited the
same reason provided by those who preferred plain brushes, fa-
miliarity. P7 attributed their inclination to their usual workflow
in existing digital illustration platforms, where when they select a
computational brush and draw directly with it, the brush’s result-
ing stroke is the final result. P6 additionally explained why they
also preferred filtered brushes, “it’s difficult to visualize what the
final result will look like without drawing directly with the filter.
Especially with the water filter, it looks so different from its original
stroke underneath.” Despite following contrasting workflows, the
two groups of participants both demonstrated initial reliance on
strategies that aligned with familiar mental models.

Other creative systems with learning curves can similarly com-
plement the introduction of new tooling with the ability to attach
familiar workflows. This attachment can be encouraged by provid-
ing familiar visual metaphors such as a white screen representing
a drawing interface [18, 22, 23] or familiar interactions such as di-
rect manipulation instead of using proxies [10, 19, 39]. In instances
when what is familiar may be unclear, such as our observations
with filter application, the flexibility to support multiple poten-
tial workflows can provide comfort when the user is learning new
techniques without alienating any particular user base.

6.3 Rewant: After greater familiarity with the
tool, artists construct new mental models.

Once the user familiarizes themselves with the new creative tool,
established patterns and mental models may gradually change. Pre-
viously, some participants remixed the static parameters of preset
filters before working on animation edits, considering drawing
and animation to be separate processes. After longer usage of fil-
tered.ink, however, they began to alternate between the two as the

line between drawing and animation blurred. Some participants
specifically reported that the ability to craft animated filters allowed
them to think about the notion of time for individual objects and
devise new strategies for storytelling. The motion of “sunlight rays
that move and radiate” (P2) can be slow to portray the mood of
a lethargic afternoon or flash rapidly to reflect the mindscape of
someone running a marathon in the scathing sun. This mentality
also shows the participant starting to think of lighting as a non-
destructive layer for the scene, noting later that the lighting can
change based on “if you want a scene to be morning day and light.”

Our SVG-based paradigm presented filters as dynamic brushes.
Participants mentioned that working under this metaphor empha-
sized thinking about the roles of brush texture and animationwithin
storytelling during the drawing process and consequently encour-
aged them to re-imagine the kinds of scenes they could create.
Under this new mental model of “re-imagined space and time” by
controlling the animation of specific elements, they created draw-
ings that could be divided into two categories: animations for 1)
emphasis or 2) mood. Drawings that employed animation for em-
phasis (P2, P3, P6, P9) apply filters to one or two objects that the
participants wanted to stand out. This choice created an illusion
of foreground objects moving in a loop juxtaposed against static
backgrounds or moving background objects against a static fore-
ground, a style used in cinemagraphs that can afford “monstrative
pleasure transcending any narrative quality of the image” [4]. Con-
versely, in drawings that employed animation for mood (P1, P4,
P5, P7, P8), filters were applied more liberally to a large majority
of objects, both foreground and background. This choice resulted
in a different style of illustration where each object had its own
unique “character” attributed by the animation. Elements with the
same filter animations applied meld into the same cohesive unit
and adopted this same “character.”

Similar reconstructions of mental models have been historically
repeated with the introduction of creative tools. The most drastic is
the transition from traditional to digital mediums, enabling artists
to rethink drawn strokes as maneuverable layers. We also see sim-
ilar changes in tools like Mental Canvas [6], where users adding
depth to images start to ideate in 3D while drawing in 2D. Another
example is Cliplets [20], where users creating cinemagraphs from
static photos found that they started to focus on small, isolated
motions in their everyday lives and see the world within these mi-
crocosms. Similar to our case, the observed shifts in these systems
were not intended, but rather discovered as side effects. Thus, more
conscious decisions from system designers on the potential ways
new interfaces may alter artists’ pre-established thinking patterns
can result in better designed infrastructures to support the creation
of personally poignant media.

6.4 Remix: Artist final creations are facilitated
by the synthesis of personally preferred
results with multiple experimental styles.

We observed several patterns in which participants remixed the
SVG filter presets: remix of filter parameters occurred before the
remix of filter primitives, the remixing order of static and animated
elements were separate initially but became intermixed with chang-
ing mental models, and those applying filters to plain SVG strokes

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

were less deliberate with remix decisions than those drawing di-
rectly with filters. Participants reported two main benefits of this
remix process: to 1) help them understand which combinations
of filter primitives can enable what effects and to 2) incorporate
other styles into their own illustration. By starting with an ex-
isting node graph and tweaking internal parameters, they were
able to use trial and error to parse through differences in values
and establish mental models of what each primitive can do. This
finding is consistent with prior work that reveals how people can
learn complex software through trial-and-error [34]. Since there is
no strict “error” in the trial-and-error process of parameter-based
creative authoring, only subjective notions of more “attractive” or
“favorable” outcomes to denote success cases, the ability to save
instances of remix can not only help the user learn the technical
details involved but also delineate and parse out the operations nec-
essary to achieve divergent visual outcomes and share these with
others. The increased understanding of filters and depth of filter
exploration, as a result of our participants’ successive iterations of
each other’s brushes and their additions to the list of presets, are
consistent with prior findings that suggest the benefit of multiple
generations of contributors in creative processes [56].

In prior works, remix occurred at varying degrees of abstraction,
ranging from lower complexities of basic customization to higher
complexities of medley remix [8], both of which have their draw-
backs and benefits. Lower complexity systems such as Thingiverse’s
Customizer that enable parameter manipulation of object proper-
ties [36] are user-friendly but produce results that can be traced
back to the original parent. Conversely, higher complexity systems
like Sketch-a-bit where artists add strokes to build upon a shared
motif [51] require greater knowledge of the system but generate
results where the original parents are unrecognizable. We observed
that filtered.ink provided different complexities to different partici-
pants; some only twiddled with the parameters and preserved the
filter’s visual forms while others completely rearranged filter prim-
itives such that the original filter was unrecognizable. Those who
chose to upload their remixed filters as new presets for others to
see when presented with the opportunity fell in the latter category.
For similar creative tools with remix capabilities, emphasizing high
complexity remix within the export and import work cycle can
potentially increase the likelihood of users sharing their remixed
examples. This sharing is pivotal to the generation of new visual
examples, feeding back to the first stage of this user model to in-
spire the exploration of others. What’s unique about the nature of
vector graphics is that both these filters and strokes can be remixed
in their final output form. They are stored separately in the SVG
files, enabling the full cycle of remixing from the output of another
dynamic illustration. This is unlike GIF or PNG where remixing of
the output is inherently impossible due to the assimilated blending
that occurs when the work is converted to its final form, even if it
had remixable elements while being composed, e.g. in prior tools
with dynamic elements and programmable brushes [20, 23, 30].

6.5 User Model Summary
Using filtered.ink, we wanted to explore the natural workflows that
users followed when illustrating with SVG filters (Q1) and how
these filters influenced the styles of dynamic vector illustration

(Q2). We found that these questions are closely intertwined with
our proposed user model. Visual examples of filters provided by
the system incentivized the user to explore the interface through
fixation on a preferred style within the examples. Influences of the
fixated style were transferred to certain strokes in the final illus-
tration. To create this illustration, users initially relied on familiar
workflows, although the definition of “familiar” differed based on
prior experiences with static and dynamic mediums. Those in the
former category used filters to post-process strokes, while those
in the latter category drew with animated textures directly. As the
users gained greater comfort, they reconsidered pre-established
mental models for illustration and started thinking about how to
use particular animated filters to associate mood, character, and em-
phasis with individual elements in the drawing for storytelling. To
achieve their final results, they relied on remix at varying degrees
of complexity to combine their ideas with filters created by others.
If they felt the remixed results were distinctive enough, they opted
to upload them to serve as examples to others.

This user model is one that stems from filtered.ink’s SVG and
vector-based affordances. Filtered strokes were seen as inspirational
andmotivating because users operated on the basis that the textures
and animations can be freely edited and transferred non-linearly
without losing quality across iterations of exported drawings.When
participants wanted to recreate these effects, they were able to
apply familiarmental models that kept drawing and post-processing
independent using a node graph interface that presented the filters
as separate stacking effects. As they continued to use the filter-as-
brush metaphor which incentivized the synthesis of drawing with
animation/texture application, however, they felt more inclined
to rewant the stories associated with each drawn element. Finally,
remix of the SVG can be performed and shared at various levels
of breakdown of the drawing (filter primitive parameters, filter
primitive combinations, stroke, and drawing), lending to greater
creative possibilities in web-based collaborative work.

While its inception is rooted in SVGs, the user model can also
be applied to other systems for dynamic illustrations or those that
explore relationships between artists and technical tools. For ex-
ample, in Draco [23], artists wanted to create ambient motion with
respect to individual objects, but usage of the tool coerced them
to rewant and think in terms of more general animated patterns
instead. Findings in Demystified Dynamic Brushes [30] similarly
revealed that artists wanted to rely on familiar interactions initially,
then “an hour into the session I felt like I was translating between
the world of numbers and artwork” [30]. These artists also relied
heavily on changes they could see to direct their manual manipula-
tion of program state and underlying code. In these systems, users
may additionally undergo multiple cycles of rewant and remix as
they iterate on what can be accomplished with the new tools and
decide on preferred experimental styles to remix. Conversely, they
may just be content with only applying familiar methods and men-
tal models, and are unwilling to reconsider traditional strategies.
Some users may also not want to share their work as examples. The
collection of inspirational examples may thus become saturated in
one type of aesthetic or become an onus of the system. We also note
that the user model is only applicable when a reported learning
curve is present in a creative tool, and in most instances, systems
are designed to mitigate learning curves. However, in instances

CHI ’23, April 23–28, 2023, Hamburg, Germany Zhou et al.

when learning is inevitable for the user, we hope that the model can
provide useful insights and help direct purposeful design choices
that augment the artist’s drawing experience.

7 LIMITATIONS AND FUTURE WORK
Since participants only used the tool for 80 minutes, a third of
which was spent familiarizing themselves with the application and
learning about filters, future longitudinal studies with a smaller
focus group can better reveal more nuances about artist thought
processes, creative possibilities enabled by this type of tool, and
how the proposed user model evolves. Our system is also limited
by the simplicity of its canvas interface. Participants felt that the
lack of layers and limited variety of drawing tools like shapes or
lasso prevented them from creating more complex illustrations.
Perhaps the filter editor could instead be restructured as a plugin
to an existing more comprehensive drawing tool.

Current image-sharing platforms rarely support the full extent
of vector-based media. While a standalone animated vector file can
be opened and loaded in modern web browsers such as Chrome and
Safari, it cannot be uploaded and previewed on many portfolio sites.
One participant (P8) commented on this, “I can’t send animated
SVGs to people and post it on Instagram; I’d have to screen-record
in order to show people what I made,” essentially converting the
file format back to raster and removing edit capabilities. This lack
of widespread systematic support deters both system designers and
artists, as artwork created using filtered.ink cannot be posted on
sites artists would typically share their work on.

8 CONCLUSION
filtered.ink attempts to expand the boundaries of vector illustration
by empowering artists to design lightweight textures and anima-
tions that can be applied to brush strokes. These new properties
enable vector illustrations to depart from standard minimalist, logo-
like, and flat styles to instead portray rich moods and atmosphere
through the medley of lighting, material, and dynamic effects. To
achieve this, filtered.ink relies on a live node graph-based editor that
decomposes filter code of a type of vector graphic, SVGs, into se-
mantic components. This interface lets users bypass coding prereq-
uisites to manipulate their illustration instrument so that it aligns
with their visual mental model. Using stateful looping through fil-
ter parameter values, our system also allows illustrators without
animation backgrounds to create repeating animations in vector.
We collect observations from a task-based usability evaluation of
filtered.ink with hobbyist and professional artists into a user model
on participant workflow patterns and stylistic outcomes for initial
usage of creative systems with technical learning curves. Users in
this model are able to create personally satisfactory art by evolving
familiar mental models and workflows into new ones. By creating,
recombining, and sharing painterly, dynamic vector illustrations,
users are afforded a new way to express themselves on the web.

ACKNOWLEDGMENTS
This work is supported by the National Science Foundation under
Grant No. IIS-1552663. We thank Ji Won Chung, Zainab Iftikhar,
Talie Massachi, Shaun Wallace, James Tompkin, and Daniel Ritchie
for their feedback and intellectual support.

REFERENCES
[1] Vladimir Agafonkin. 2020. Simplify.js. https://github.com/mourner/simplify-js.
[2] Jorge Aznar. 2016. FILDROP. http://jorgeatgu.github.io/svg-filters/.
[3] Alexandre Carlier, Martin Danelljan, Alexandre Alahi, and Radu Timofte. 2020.

DeepSVG: A Hierarchical Generative Network for Vector Graphics Animation.
arXiv:2007.11301 [cs.CV]

[4] Alessandra Chiarini. 2016. TheMultiplicity of the Loop: The Dialectics of Stillness
and Movement in the Cinemagraph. Comunicazioni sociali 38, 1 (2016), 87–92.
https://doi.org/10.1400/240293

[5] Ayan Das, Yongxin Yang, Timothy M. Hospedales, Tao Xiang, and Yi-Zhe Song.
2021. Cloud2Curve: Generation and Vectorization of Parametric Sketches. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, Nashville, TN, USA, 7088–7097. https://doi.org/10.1109/CVPR46437.
2021.00701

[6] Julie Dorsey, Songhua Xu, Gabe Smedresman, Holly Rushmeier, and Leonard
McMillan. 2007. The Mental Canvas: A Tool for Conceptual Architectural Design
and Analysis. In 15th Pacific Conference on Computer Graphics and Applications
(PG’07). IEEE, Maui, Hawaii, 201–210. https://doi.org/10.1109/PG.2007.64

[7] Jakub Fišer, Michal Lukáč, Ondřej Jamriška, Martin Čadík, Yotam Gingold, Paul
Asente, and Daniel Sýkora. 2014. Color Me Noisy: Example-based Rendering of
Hand-colored Animations with Temporal Noise Control. Computers Graphics
Forum (EGSR 2014) 33, 4 (2014), 1–10. https://doi.org/10.1111/cgf.12407

[8] Christoph M. Flath, Sascha Friesike, Marco Wirth, and Frederic Thiesse. 2017.
Copy, Transform, Combine: Exploring the Remix as a Form of Innovation. Journal
of Information Technology 32, 4 (2017), 306–325. https://doi.org/10.1057/s41265-
017-0043-9

[9] Neil Fraser. 2015. Ten Things We’ve Learned from Blockly. In Proceedings of
the 2015 IEEE Blocks and Beyond Workshop. IEEE Computer Society, USA, 49–50.
https://doi.org/10.1109/BLOCKS.2015.7369000

[10] Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Di-
rect Manipulation. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for ComputingMa-
chinery, New York, NY, USA, 379–390. https://doi.org/10.1145/2984511.2984575

[11] Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-
Directed Programming for SVG. In Proceedings of the 32nd Annual ACM Sym-
posium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 281–292.
https://doi.org/10.1145/3332165.3347925

[12] Scarlett R. Herring, Chia-Chen Chang, Jesse Krantzler, and Brian P. Bailey. 2009.
Getting Inspired! Understanding How and Why Examples Are Used in Creative
Design Practice. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing
Machinery, New York, NY, USA, 87–96. https://doi.org/10.1145/1518701.1518717

[13] Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for
Inverse Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186 (nov
2019), 14 pages. https://doi.org/10.1145/3355089.3356516

[14] Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier.
2022. An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans.
Graph. 41, 2, Article 18 (jan 2022), 17 pages. https://doi.org/10.1145/3502431

[15] Adobe Inc. 2018. After Effects. https://www.adobe.com/products/aftereffects.
html

[16] Adobe Inc. 2019. Illustrator. https://adobe.com/products/illustrator
[17] Client IO. 2019. SVG Filter Builder. https://svgfilters.com/.
[18] Jennifer Jacobs, Joel Brandt, Radomír Mech, and Mitchel Resnick. 2018. Extending

manual drawing practices with artist-centric programming tools. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/
3173574.3174164

[19] Jennifer Jacobs, Sumit Gogia, Radomír Mundefinedch, and Joel R. Brandt. 2017.
Supporting Expressive Procedural Art Creation through Direct Manipulation. In
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New
York, NY, USA, 6330–6341. https://doi.org/10.1145/3025453.3025927

[20] Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz, Hugues Hoppe, Matt
Uyttendaele, and Michael Cohen. 2012. Cliplets: Juxtaposing Still and Dynamic
Imagery. In Proceedings of the 25th Annual ACM Symposium on User Interface
Software and Technology (Cambridge, Massachusetts, USA) (UIST ’12). Association
for Computing Machinery, New York, NY, USA, 251–260. https://doi.org/10.
1145/2380116.2380149

[21] Hyeonsu B. Kang, Gabriel Amoako, Neil Sengupta, and Steven P. Dow. 2018.
Paragon: An Online Gallery for Enhancing Design Feedback with Visual Exam-
ples. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems (Montreal QC, Canada) (CHI ’18). Association for Computing Machinery,
New York, NY, USA, 1–13. https://doi.org/10.1145/3173574.3174180

[22] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice.
2014. Kitty: sketching dynamic and interactive illustrations. In Proceedings
of the 27th annual ACM symposium on User interface software and technology.

https://github.com/mourner/simplify-js
http://jorgeatgu.github.io/svg-filters/
https://arxiv.org/abs/2007.11301
https://doi.org/10.1400/240293
https://doi.org/10.1109/CVPR46437.2021.00701
https://doi.org/10.1109/CVPR46437.2021.00701
https://doi.org/10.1109/PG.2007.64
https://doi.org/10.1111/cgf.12407
https://doi.org/10.1057/s41265-017-0043-9
https://doi.org/10.1057/s41265-017-0043-9
https://doi.org/10.1109/BLOCKS.2015.7369000
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/1518701.1518717
https://doi.org/10.1145/3355089.3356516
https://doi.org/10.1145/3502431
https://www.adobe.com/products/aftereffects.html
https://www.adobe.com/products/aftereffects.html
https://adobe.com/products/illustrator
https://svgfilters.com/
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3173574.3174164
https://doi.org/10.1145/3025453.3025927
https://doi.org/10.1145/2380116.2380149
https://doi.org/10.1145/2380116.2380149
https://doi.org/10.1145/3173574.3174180

filtered.ink: Creating Dynamic Illustrations with SVG Filters CHI ’23, April 23–28, 2023, Hamburg, Germany

Association for Computing Machinery, New York, NY, USA, 395–405. https:
//doi.org/10.1145/2642918.2647375

[23] Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, Shengdong Zhao, and
George Fitzmaurice. 2014. Draco: Bringing Life to Illustrations with Kinetic
Textures. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Toronto, Ontario, Canada) (CHI ’14). Association for Computing Ma-
chinery, New York, NY, USA, 351–360. https://doi.org/10.1145/2556288.2556987

[24] Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani, and George Fitzmaurice.
2016. SKUID: Sketching Dynamic Drawings Using the Principles of 2D Anima-
tion. In Proceedings of the 4th International Conference on Mobile and Ubiquitous
Multimedia (Christchurch, New Zealand) (MUM ’05). Association for Computing
Machinery, New York, NY, USA, 69–77. https://doi.org/10.1145/2897839.2927410

[25] Rubaiat Habib Kazi, Takeo Igarashi, Shengdong Zhao, and Richard Davis. 2012.
Vignette: Interactive Texture Design and Manipulation with Freeform Gestures
for Pen-and-Ink Illustration. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Austin, Texas, USA) (CHI ’12). Association for
Computing Machinery, New York, NY, USA, 1727–1736. https://doi.org/10.1145/
2207676.2208302

[26] Michele Knobel and Colin Lankshear. 2008. Remix: The Art and Craft of Endless
Hybridization. Journal of Adolescent & Adult Literacy 52, 1 (2008), 22–33. http:
//www.jstor.org/stable/30139647

[27] Jan-Peter Krämer, Michael Hennings, Joel Brandt, and Jan Borchers. 2016. An
Empirical Study of Programming Paradigms for Animation. In Proceedings of
the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering (Austin, Texas) (CHASE ’16). Association for Computing Machinery,
New York, NY, USA, 58–61. https://doi.org/10.1145/2897586.2897597

[28] Chinmay Kulkarni, Steven P. Dow, and Scott R. Klemmer. 2014. Early and
Repeated Exposure to Examples Improves Creative Work. In Design Think-
ing Research: Building Innovation Eco-Systems, Larry Leifer, Hasso Plattner,
and Christoph Meinel (Eds.). Springer International Publishing, Cham, 49–62.
https://doi.org/10.1007/978-3-319-01303-9_4

[29] Sang Won Lee, Yujin Zhang, Isabelle Wong, Yiwei Yang, Stephanie D O’Keefe,
and Walter S Lasecki. 2017. SketchExpress: Remixing Animations for More
Effective Crowd-Powered Prototyping of Interactive Interfaces. In Proceedings
of the 30th Annual ACM Symposium on User Interface Software and Technology.
Association for Computing Machinery, New York, NY, USA, 817–828. https:
//doi.org/10.1145/3126594.3126595

[30] Jingyi Li, Joel Brandt, Radomír Mech, Maneesh Agrawala, and Jennifer Jacobs.
2020. Supporting Visual Artists in Programming through Direct Inspection and
Control of Program Execution. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3313831.3376765

[31] Jingyi Li, Sonia Hashim, and Jennifer Jacobs. 2021. What We Can Learn From
Visual Artists About Software Development. In Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. Association for Computing
Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445682

[32] Yingjia Li, Xiao Zhai, Fei Hou, Yawen Liu, Aimin Hao, and Hong Qin. 2019.
Vectorized painting with temporal diffusion curves. IEEE Transactions on Visu-
alization and Computer Graphics 27, 1 (2019), 228–240. https://doi.org/10.1109/
TVCG.2019.2929808

[33] Raphael Gontijo Lopes, David Ha, Douglas Eck, and Jonathon Shlens. 2019.
A Learned Representation for Scalable Vector Graphics. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). IEEE, Seoul, South
Korea, 7930–7939. https://doi.org/10.1109/ICCV.2019.00802

[34] Damien Masson, Jo Vermeulen, George Fitzmaurice, and Justin Matejka. 2022.
Supercharging Trial-and-Error for Learning Complex Software Applications. In
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article
381, 13 pages. https://doi.org/10.1145/3491102.3501895

[35] Mozilla. 2021. <filter>. https://developer.mozilla.org/en-US/docs/Web/SVG/
Element/filter.

[36] Lora Oehlberg, Wesley Willett, and Wendy E. Mackay. 2015. Patterns of Physical
Design Remixing in OnlineMaker Communities. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (Seoul, Republic of
Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA,
639–648. https://doi.org/10.1145/2702123.2702175

[37] Amal Dev Parakkat, Marie-Paule R Cani, and Karan Singh. 2021. Color by
numbers: Interactive structuring and vectorization of sketch imagery. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
Association for Computing Machinery, New York, NY, USA, 1–11. https:
//doi.org/10.1145/3411764.3445215

[38] The Inkscape Project. 2020. Inkscape. https://inkscape.org
[39] Jing Qian, Tongyu Zhou, Meredith Young-Ng, Jiaju Ma, Angel Cheung, Xiangyu

Li, Ian Gonsher, and Jeff Huang. 2021. Portalware: Exploring Free-Hand AR
Drawing with a Dual-Display Smartphone-Wearable Paradigm. In Designing
Interactive Systems Conference 2021 (Virtual Event, USA) (DIS ’21). Association for
Computing Machinery, New York, NY, USA, 205–219. https://doi.org/10.1145/
3461778.3462098

[40] Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J. Mitra. 2021.
Im2Vec: Synthesizing Vector Graphics without Vector Supervision. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Los
Alamitos, CA, USA, 7342–7351. https://doi.org/10.1109/CVPR46437.2021.00726

[41] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (nov 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[42] John Rieman. 1996. A Field Study of Exploratory Learning Strategies. ACM Trans.
Comput.-Hum. Interact. 3, 3 (September 1996), 189–218. https://doi.org/10.1145/
234526.234527

[43] Vidya Setlur, Yingqing Xu, Xuejin Chen, and Bruce Gooch. 2005. Retargeting
vector animation for small displays. In Proceedings of the 4th international confer-
ence on mobile and ubiquitous multimedia. Association for Computing Machinery,
New York, NY, USA, 69–77. https://doi.org/10.1145/1149488.1149500

[44] Liang Shi, Beichen Li, Miloš Hašan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. Match: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6, Article 196 (nov 2020),
15 pages. https://doi.org/10.1145/3414685.3417781

[45] Yang Shi, Zhaorui Li, Lingfei Xu, and Nan Cao. 2021. Understanding the Design
Space for Animated Narratives Applied to Illustrations. In Extended Abstracts of
the 2021 CHI Conference on Human Factors in Computing Systems. Association
for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/
3411763.3451840

[46] Ben Shneiderman. 2007. Creativity Support Tools: Accelerating Discovery and
Innovation. Commun. ACM 50, 12 (dec 2007), 20–32. https://doi.org/10.1145/
1323688.1323689

[47] Pao Siangliulue, Joel Chan, Krzysztof Z. Gajos, and Steven P. Dow. 2015. Providing
Timely Examples Improves the Quantity and Quality of Generated Ideas. In
Proceedings of the 2015 ACM SIGCHI Conference on Creativity and Cognition
(Glasgow, United Kingdom) (C&C ’15). Association for Computing Machinery,
New York, NY, USA, 83–92. https://doi.org/10.1145/2757226.2757230

[48] Ivan E. Sutherland. 1964. Sketch Pad a Man-Machine Graphical Communication
System. In Proceedings of the SHARE Design Automation Workshop (DAC ’64).
Association for Computing Machinery, New York, NY, USA, 6.329–6.346. https:
//doi.org/10.1145/800265.810742

[49] SVGator Team. 2022. SVGator. https://www.svgator.com/
[50] John Thompson, Zhicheng Liu, Wilmot Li, and John Stasko. 2020. Understand-

ing the design space and authoring paradigms for animated data graphics. In
Computer Graphics Forum, Vol. 39. Wiley Online Library, Norrköping, Sweden,
207–218. https://doi.org/10.1111/cgf.13974

[51] Kathleen Tuite and Adam Smith. 2021. Emergent Remix Culture in an Anony-
mous Collaborative Art System. Proceedings of the AAAI Conference on Arti-
ficial Intelligence and Interactive Digital Entertainment 8, 5 (June 2021), 16–23.
https://ojs.aaai.org/index.php/AIIDE/article/view/12572

[52] Tom Van Laerhoven, Fabian Di Fiore, William Van Haevre, and Frank Van Reeth.
2011. Paint-on-glass animation: the fellowship of digital paint and artisanal
control. Computer Animation and Virtual Worlds 22, 2-3 (2011), 325–332. https:
//doi.org/10.1002/cav.406

[53] Shaun Wallace, Brendan Le, Luis A. Leiva, Aman Haq, Ari Kintisch, Gabrielle
Bufrem, Linda Chang, and Jeff Huang. 2020. Sketchy: Drawing Inspiration from
the Crowd. Proc. ACM Hum.-Comput. Interact. 4, CSCW2, Article 172 (oct 2020),
27 pages. https://doi.org/10.1145/3415243

[54] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based
Programming in High School Computer Science Classrooms. ACM Trans. Comput.
Educ. 18, 1, Article 3 (oct 2017), 25 pages. https://doi.org/10.1145/3089799

[55] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
Oriented Drawing. In Proceedings of the 2016 CHI Conference on Human Factors
in Computing Systems (San Jose, California, USA) (CHI ’16). Association for
Computing Machinery, New York, NY, USA, 4610–4621. https://doi.org/10.1145/
2858036.2858075

[56] Lixiu Yu and Jeffrey V. Nickerson. 2011. Cooks or Cobblers? Crowd Cre-
ativity through Combination. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). Asso-
ciation for Computing Machinery, New York, NY, USA, 1393–1402. https:
//doi.org/10.1145/1978942.1979147

[57] Zhengxia Zou, Tianyang Shi, Shuang Qiu, Yi Yuan, and Zhenwei Shi. 2021.
Stylized Neural Painting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Nashville, TN, USA, 15689–15698.
https://doi.org/10.1109/CVPR46437.2021.01543

https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2642918.2647375
https://doi.org/10.1145/2556288.2556987
https://doi.org/10.1145/2897839.2927410
https://doi.org/10.1145/2207676.2208302
https://doi.org/10.1145/2207676.2208302
http://www.jstor.org/stable/30139647
http://www.jstor.org/stable/30139647
https://doi.org/10.1145/2897586.2897597
https://doi.org/10.1007/978-3-319-01303-9_4
https://doi.org/10.1145/3126594.3126595
https://doi.org/10.1145/3126594.3126595
https://doi.org/10.1145/3313831.3376765
https://doi.org/10.1145/3411764.3445682
https://doi.org/10.1109/TVCG.2019.2929808
https://doi.org/10.1109/TVCG.2019.2929808
https://doi.org/10.1109/ICCV.2019.00802
https://doi.org/10.1145/3491102.3501895
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/filter
https://developer.mozilla.org/en-US/docs/Web/SVG/Element/filter
https://doi.org/10.1145/2702123.2702175
https://doi.org/10.1145/3411764.3445215
https://doi.org/10.1145/3411764.3445215
https://inkscape.org
https://doi.org/10.1145/3461778.3462098
https://doi.org/10.1145/3461778.3462098
https://doi.org/10.1109/CVPR46437.2021.00726
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/234526.234527
https://doi.org/10.1145/234526.234527
https://doi.org/10.1145/1149488.1149500
https://doi.org/10.1145/3414685.3417781
https://doi.org/10.1145/3411763.3451840
https://doi.org/10.1145/3411763.3451840
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/2757226.2757230
https://doi.org/10.1145/800265.810742
https://doi.org/10.1145/800265.810742
https://www.svgator.com/
https://doi.org/10.1111/cgf.13974
https://ojs.aaai.org/index.php/AIIDE/article/view/12572
https://doi.org/10.1002/cav.406
https://doi.org/10.1002/cav.406
https://doi.org/10.1145/3415243
https://doi.org/10.1145/3089799
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/2858036.2858075
https://doi.org/10.1145/1978942.1979147
https://doi.org/10.1145/1978942.1979147
https://doi.org/10.1109/CVPR46437.2021.01543

	Abstract
	Introduction
	Related Work
	Vector Creation and Manipulation
	Node-based End-user Authoring
	Dynamic Illustration

	Filtered.ink
	SVG Filters
	Design Considerations
	SVG Filter Editor
	Drawing Interface
	Remix Affordances

	Evaluation
	Participants
	Study Protocol

	Results
	Supporting Natural UserWorkflow
	Filter Effects on Aesthetic Style

	Discussion
	See: Artist motivations and actions are

guided by immediate inspirational visual

stimuli.
	Want: To achieve novel desired visual

outputs with new tools, artists initially still

rely on familiar traditional methods.
	Rewant: After greater familiarity with the

tool, artists construct new mental models.
	Remix: Artist final creations are facilitated

by the synthesis of personally preferred

results with multiple experimental styles.
	User Model Summary

	Limitations and Future Work
	Conclusion
	Acknowledgments
	References

