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ABSTRACT
We examine the relationship between eye gaze and typing, focusing
on the differences between touch and non-touch typists. To en-
able typing-based research, we created a 51-participant benchmark
dataset for user input across multiple tasks, including user input
data, screen recordings, webcam video of the participant’s face,
and eye tracking positions. There are patterns of eye movements
that differ between the two types of typists, representing glances
at the keyboard, which can be used to identify touch-.typed strokes
with 92% accuracy. Then, we relate eye gaze with cursor activity,
aligning both pointing and typing to eye gaze. One demonstra-
tive application of the work is in extending WebGazer, a real-time
web-browser-based webcam eye tracker. We show that incorporat-
ing typing behavior as a secondary signal improves eye tracking
accuracy by 16% for touch typists, and 8% for non-touch typists.
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1 INTRODUCTION
The relationship between typing and sight has long been studied.
Psychologists investigated the eye-hand span—how the eye leads
the hand when copying text on a typewriter [Butsch 1932]—and
hypothesized a “supply line” of information held in a buffer until
it can be typed [Logan 1983]. These past studies have shown how
our minds process information cognitively when typing. But less is
known about where a person is looking during typing—a measure
that is difficult to capture without a high-precision eye tracker.

To shed light on this topic, we start by preparing a dataset to
enable this investigation. We capture behavior from participants
in a lab study across multiple interaction tasks, including mouse
and keyboard input data, screen recordings, webcam video of the
participant’s face, and eye tracking positions. This dataset serves
as the foundation for the analyses in this paper, and allows other
researchers to replicate and compare against our work.

From the dataset, we compute the distance between eye gaze
and the caret location of 51 participants as they type. We assess
both the temporal and the spatial relationships between gaze and
key press as fundamental measures. There is a condition where
a person’s behavioral patterns are quite different—that between
touch typists and typists who look at the keyboard to see the key
being pressed, e.g., those with a “hunt and peck” typing strategy.

We investigate the patterns of eyemovements that differ between
the touch and non-touch typists. As expected, touch-typists are
looking at the text when pressing a key, but that instant is not the
most likely time they are looking at the typed character, which
comes a moment later. We explore how touch typists stay focused
on the line on the screen that the text is written on zeroing in on
the characters typed just after a key press, while non-touch typists
look straight down just before the key is pressed. Such patterns are
presented as aggregated means along with individual examples.

Then, we develop a classifier using a supervised learning algo-
rithm to automatically discern touch typists from non-touch typists.
The classification works without any special equipment or software,
by usingWebGazer, an open-source webcam-based eye tracker [Pa-
poutsaki et al. 2016]. This not only enables applications that are
targeted towards touch-typists, such as the “Flat-Glass” text input
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method [Findlater et al. 2011], but also allows the inverse applica-
tion: improving eye tracking using typing behavior. We show that
it is possible to use typing to help determine where a person is
looking on the screen. Webgazer currently uses mouse pointing
and clicking for this purpose, but adding typing as a cue for touch
typists leads to an eye tracking accuracy improvement of 16% for
touch-typists, and 8% for non-touch typists.

Our contributions are: 1) describing the temporal and spatial
relationship between gaze and caret during typing, 2) the automatic
identification of touch typists based on gaze behavior, 3) incorporat-
ing the gaze and typing relationship into an eye tracker to improve
its accuracy, and 4) the preparation and release of a 51-participant
dataset for studying the gaze-typing relationship.

2 RELATEDWORK
Eye tracking provides insights into visual attention and human
behavior. For example, eye tracking lab studies on Web browsing
are often used to investigate visual attention and its correlation
with user interactions [Atterer et al. 2006]. Most research on eye
tracking and user interactions has focused on cursor movements
rather than typing. We describe literature that shows a strong align-
ment between eye and hand coordination and the need for more
naturalistic datasets to better understand the different processes
that take place when typing.

2.1 Gaze and User Interactions
Past research has repeatedly found a correlation between gaze
and cursor, with the mouse having been characterized as the “poor
man’s eye tracker” [Cooke 2006]. Chen et al. [2001] investigated this
relationship in Web navigation and showed that the dwell time and
movement of the cursor is strongly linked to how likely it is that a
user will look at that region. InWeb search, Rodden et al. [2008] and
Guo and Agichtein [2010] found that the distance between cursor
and gaze positions was larger along the x-axis. Smith et al. [2000]
and Liebling and Dumais [2014] examined the temporal relationship
between hand and gaze relationship and showed that the eyes lead
the cursor most of the time. Weill-Tessier et al. [2016] were the first
to investigate this alignment in the context of tablets, finding that,
like on desktop computers, users fixate on the location of a tap
before it happens. Although our focus is on typing, analyzing our
dataset allowed us to uncover similar patterns on the relationship
of eye gaze, cursor movement, and clicks.

2.2 Gaze and Typing
The relationship between gaze and typing has captured the atten-
tion of researchers for almost a century, but it has largely focused
on copy-typing. Copy-typing is an artificial process of copying
by retyping which differs from the common everyday process of
producing original text, e.g., when writing an email or a report.
In one of the first publications on copy-typing with a typewriter,
Butsch [1932] investigated the “eye-hand span”, the number of char-
acters the eye is ahead of the hand, and the time interval that it
takes to type a character after seeing it. Inhoff et al. further ex-
plored copy-typing and, similar to Butsch, found that the eye is 5–7
characters ahead of the hand [Inhoff and Gordon 1997; Inhoff and
Wang 1992]. In their findings, they note that this time interval is

not consistently one second and independent of the typing speed.
Johansson et al. [2010] studied typing as a creative writing activity
and, using insights from a head-mounted eye tracker, divided par-
ticipants into two groups: “monitor gazers” and “keyboard gazers”,
who can be closely linked to touch and non-touch typists. Focusing
on the productivity of the different types of gazers, they found that
monitor gazers are faster and more productive typists. Wengelin
et al. [2009] discovered that some writers fixate on text produced
prior to the location of the cursor, perhaps to process or edit it.

Feit et al. [2016] observed behavioral differences across touch
typists and non-touch typists, such as in gaze location and finger
placement. Rabbitt [1978] observed that even proficient touch typ-
ists tend to look at the screen for error correction. Our approach
uses these distinctions to identify touch typists, plus allows us to
augment gaze estimators when the user behavior allows it.

This repeatedly-observed coordination of eye and hand has been
harnessed to infer the gaze. For example, PACE [Huang et al. 2016]
is an offline eye tracker that combined mouse and keyboard inter-
actions to predict the gaze with an accuracy of 2.56◦ in visual angle,
after being trained on more than 1000 interactions. Similarly, We-
bGazer [Papoutsaki et al. 2016] uses cursor movements and clicks
to infer the gaze in real time, achieving an accuracy of 4.17◦. In
this paper, we extend WebGazer and demonstrate how typing can
improve its accuracy, especially when recognizing the differences
across touch and non-touch typists.

2.3 Remotely Gathering Eyetracking Datasets
The webcam eye tracking community has focused on gathering
large datasets for offline trainingwithmachine learning. Lebreton et
al. [2015] used Amazon Mechanical Turk to crowdsource a webcam
eye tracking calibration dataset consisting of more than 200 par-
ticipants. The experiment sent telemetry to a remote webserver to
perform the eyetracking computation. TurkerGaze [Xu et al. 2015]
similarly released a game on Amazon Mechanical Turk to gather
data that were used to predict image saliency. Krafka et al. [2016]
developed an iOS app to crowdsource GazeCapture, a dataset of
2.5M frames from 1450 participants. They used it to perform eye
tracking on iPhones and iPads. Unlike our dataset, none of these
works includes naturalistic tasks, and typing is absent. For example,
GazeCapture consists of frames collected only when participants
looked at a stimulus on the screen.

3 DATASET
We created an eye tracking dataset to enable replication of our
study and to enable new research. The dataset is publicly avail-
able at https://webgazer.cs.brown.edu/data. Our focus in this
paper is on the typing behavior exhibited in the dataset, and its
applications to webcam eye tracking, but researchers with other in-
terests may find this dataset useful as it contains data from a diverse
set of tasks. For the eye tracking community, this dataset provides
a curated benchmark that includes videos of 51 users, interaction
logs, and gaze predictions by a commercial eye tracker.

3.1 Experiment Design
Over the span of three weeks, we recruited participants to com-
plete a series of browser-based tasks: two calibration, one pointing
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Figure 1: The two options for the experimental setting: a PC
with an external webcam (left) or a MacBook Pro (right). To-
bii Pro X3-120 is attached at the bottom of both screens.

and clicking, four search, and four creative writing tasks. Through-
out the experiment, we recorded participant faces, screens, logged
each of their mouse and keyboard interactions, and collected de-
mographic information. For ground truth information of where a
person was looking, we used the Tobii Pro X3-120 to record the
participants’ point of gaze on the screen throughout the experi-
ment. This is a high-end remote eye tracker with a reported gaze
sampling frequency of 120 Hz, accuracy of 0.4◦, and precision of
0.24◦. Contrary to most eye tracking studies, participants were free
to move their heads and change their posture, prompting more
naturalistic user behavior.

Following procedures reviewed by our Institutional Human Sub-
jects Review Board, participants agreed to have the video, audio,
and logs of the study recorded and released for research purposes
in a publicly-available dataset. Each participant was asked if they
were familiar with touch typing, an ability that was later visually
confirmed by the experimenter. Upon consent, participants were
randomly assigned to a lighting condition: natural light from two
directly-facing windows, or typical artificial office light with the
blinds of the windows closed. In the case of natural light, the ex-
perimenter noted down if the day was sunny or cloudy; the study
always took place during daylight. A white projector screen was
used as a uniform background.

Participants could perform the study on a desktop PC or a Mac-
Book Pro laptop with either an external mouse or the built-in touch-
pad as shown in Figure 1. The laptop included a webcam, while
an external Logitech C920 HD Pro webcam was attached to the
desktop PCmonitor. The Tobii Pro X3-120 eye tracker was mounted
at the bottom of the screen for both settings. The desktop PC ran
Windows 10 and had a 24-inch Samsung SyncMaster 2443 monitor
with a resolution of 1920 × 1200 pixels (94 PPI). The MacBook Pro
(Retina, 15-inch, Late 2013) ran macOS Sierra 10.12.5 at a resolution
of 1440× 900 pixels (111 PPI). For both settings, we used the Google
Chrome browser (v. 56.0.2924) in a maximized window.

The study started with the calibration of the Tobii Pro X3-120;
a stimulus appeared in five fixed locations on the screen. The ex-
perimenter would judge if the calibration was successful based on
visual cues provided by the Tobii interface and would ensure that
the face of the participant was within the webcam’s field of view,
that all interactions were logged, and that the screen was recorded.

Each participant completed the same sequence of tasks. After
the completion of a task, its corresponding webcam video feed was
automatically downloaded through Chrome. The first task, which

Figure 2: Composite image of the 9 stimuli locations in the
Dot Test. The stimuli appear one at a time, in western order,
with the next appearing after the user clicks its center.

Figure 3: The instructions for the reading (top) and writing
(bottom) portion of the search task that corresponds to the
“educational advantages of social networking tasks” query.

we refer to as the “Dot Test”, is a simple target selection task that
forces the user to look closely at the target to successfully aim
at it. It began with a black circle and a concentric smaller yellow
circle appearing at the top left corner of the screen. The goal was to
click inside the yellow circle. Because of its small size, we provided
assisting visual cues. If they clicked at it, the whole black circle
would move to one of 9 locations within a 3×3 grid, from the top
left corner all the way to the bottom right corner of the screen, as
seen in Figure 2. The Dot Test was followed by a standard Fitts’
Law study using the multidirectional tapping task suggested by the
ISO9241-9 standard [Soukoreff and MacKenzie 2004].

The next batch of tasks aimed to replicate a realistic scenario of
reading, searching for information, and typing the solution. Partici-
pants were given four questions and a query with its corresponding
search engine result page (SERP). Table 1 shows the four questions
and their queries in the order they were given to all participants.
The questions and queries were found in the TREC 2014 Web Track
organized by NIST [of Standards and Technology 2017]. For each
query, we downloaded the first Google SERP and confirmed that at
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Table 1: The four questions selected from the TREC 2014 Web Track and the corresponding queries given to participants.

Task Description Query

How is running beneficial to the health of the human body? benefits of running
What are the educational benefits of social networking sites? educational advantages of social networking sites
What are the best places to find morel mushrooms growing? where to find morel mushrooms
What treatments are available for a tooth abscess? tooth abscess

least one of its links contained the answer. Participants could visit
multiple links, but were not allowed to alter the query or go beyond
the first page of results. After being satisfied with their search,
they would scroll to the bottom of the search result page, where a
button would take them to the writing portion of the task. There,
they would type the answer they synthesized. We prohibited the
action of copy-and-pasting text to reveal the true interactions that
take place during the creative production and typing of text. Fig-
ure 3 shows the instructions for the reading and writing tasks that
correspond to the “advantages of social networking sites” query.

The final task, “Final Dot Test” was similar to the Dot Test and we
use it as a measure of the accuracy of eye tracking systems. Instead
of clicking on the black circle, participants watched it move on its
own within a 3 × 3 grid, remaining for 3 seconds in each location.
Participants were explicitly instructed to look at the circle as it
moved. On average, this task took place 20 minutes after the cali-
bration, therefore it can be used to estimate drift. Participants were
given a brief demographics survey and compensated $20 (USD).

3.2 Participants
We recruited 64 participants (32 female, 32 male) through campus-
wide mailing lists. The study lasted 21minutes on average. Of those
64 participants, 13 were excluded from the curated dataset and its
analysis due to technical difficulties during the experiment: issues
with the Tobii Pro X3-120 or the screen recording, or interruptions
throughout the study by the participant. This resulted in 51 partici-
pants whose data we use in this paper, unless otherwise specified.
Their ages ranged from 21 to 58 years (M = 27.04, SD = 5.64). Out
of the 64 participants, 26 had normal vision, 19 wore eye glasses,
and 6 wore contact lenses. Across all participants, there were 4,801
clicks, 109,640 mouse movements, 71,412 key presses, and 4,501,959
gaze predictions made by the eye tracker.

At the end of the study, we surveyed participants for their gender,
age, dominant hand, eye color, if they have normal vision, wear
eye glasses or contacts, and to self-report their race, and skin color.
The provided race categories were American Indian or Alaska Na-
tive, Asian, Black or African American, White, or Other. For the
skin color, we matched a color bar obtained from Ho and Robin-
son [2015] to the color of the inside part of their upper arm. Finally,
the experimenter made observations about any type of facial hair
(none, little, beard) and classified the participants into touch typists
or non-touch typists based on the frequency that the participant
glanced at the keyboard.

3.3 Dataset Limitations
Reliably capturing and playing webcam video frames with precise
timestamps is arguably impossible with current web standards and

browsers. As such, there is a variable gap between when a frame is
captured and when it is played back. This is approximately within
a video frame of time (≈1/30th second). Contrast this to a Tobii
X3-120 timestamp, which is approximately within 1/120th second.
This typically means that saccades have incorrect instantaneous
webcam-based gaze, but that fixations are correct (within error).

4 USER INTERACTIONS VERSUS EYE GAZE
Our dataset includes both specific-target selection tasks, and natu-
ralistic tasks such as web search, reading, and typing. With this, we
will confirm literature findings onmouse cursor and gaze alignment,
and gain insights into the relationship between typing and gaze
attention. For this, we assume that the gaze predictions obtained
from the Tobii Pro X3-120 correspond to the true gaze locations.

4.1 Mouse Clicks versus Eye Gaze
Mouse click location and gaze point have been shown to approx-
imately agree spatially, e.g., Huang et al. [2012] found that the
median Euclidean distance between gaze and clicks is 74 pixels.
Figure 4 reports the average distance between gaze and clicks for
all tasks in our study. The mean Euclidean distance is 137 pixels,
which is nearly double that found by Huang et al., and may be due
to the near doubling of screen pixel density since then.

We also identify the temporal lag between gaze and mouse when
a click occurs. We average across all tasks and participants the
distances between the mouse location and Tobii Pro X3-120 gaze
locations for 3 seconds before and after every click. This is smallest
480 ms before the click, at 110 pixels, with corresponding mean
center offset ∆x = −20 and ∆y = −2 (Figure 4). These numbers are
small, showing that the user looks at the target before the click.
However, the half-second time lag indicates that, at click time, the
gaze has already started to drift away.

4.2 Mouse Cursor Movement versus Eye Gaze
Past research has shown that equating cursor location to gaze
location is usually imprecise, with the average distance between
gaze and active cursor movements being about twice as far as
during a click [Huang et al. 2012]. In our data, the mean Euclidean
distance of a cursor movement and the Tobii Pro X3-120 predictions
is 206 pixels (Figure 4). It is reasonable that the distance is higher,
as our analysis also includes ‘non-action’ cursor movements. The
distance between the cursor location and the corresponding Tobii
Pro X3-120 prediction is smallest 100 ms before the cursor moves.
Unlike mouse clicks, the temporal shift is small. This is perhaps due
to the magnitude of cursor events that happen continuously and
before an action has been completed. On average, the user looks
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Interaction Time (ms) Mean dist. (px) Offset x, y (px)

Mouse click 0 137 -25, -7
Closest dist. -480 110 -20, -2

Mouse cursor move 0 206 -67, -17
Closest dist. -100 -100 -66, -17

Typing—all 0 192 -17, 149
Closest dist. 210 178 -13, 142

Touch typists 0 160 -9, 119
Closest dist. 210 151 -6, 116

Non-touch typists 0 352 -55, 299
Closest dist. 540 294 -39, 239

Touch Typists

Touch Typists

Non-Touch Typists

Non-Touch Typists

D
is

ta
nc

e 
(p

ix
el

s)

Distance between Caret and Gaze

Figure 4: Comparing mean Euclidean distances between interaction locations and Tobii Pro X3-120 gaze predictions, both at
the moment the interaction occurred (time offset = 0) and at the time when the interaction location and gaze prediction were
closest within a 6-second window (‘Closest dist.’ in table; axes to right), with negative numbers before the interaction. The
distance between the mean gaze prediction and the location of the interaction is also reported as the offset (bias) between the
positions in x and y. A negative x places gaze predictions to the left of the interaction, with negative y correspondingly above.

above and left of the cursor when the distance between a cursor
movement and the gaze is minimized (∆x = −66, ∆y = −17).

4.3 Typing Caret versus Eye Gaze
The relationship between typing and gaze activity is less researched
than between mouse clicks/movements and gaze, i.e., for copy-
typing only [Inhoff and Gordon 1997], and so we begin by inves-
tigating the alignment of key presses and gaze in free-typing. In
our analysis, we report numbers for all participants, and for touch
typists and non-touch typists based on the labels assigned during
the study by the experimenter.

During typing, the caret is typically a blinking cursor at the
position where text is being inserted. On average, the distance
between the caret during a key press and its corresponding gaze
prediction is 192 pixels (Figure 4). There is a substantial difference
between touch typists (160 pixels) and non-touch typists (352 pixels).
This difference remains when examining the closest distance within
a 6-second window: 210 ms after a key was pressed, the average
gaze is 178 pixels away from the caret. For touch typists, on average,
the Euclidean distance between a key press and the Tobii Pro X3-
120 prediction is smallest 210 ms after the key press, at 151 pixels
away. At that moment, the corresponding average values for the x
and y axes are -6 and 116 pixels, respectively. On the other hand,
for non-touch typists, the distance between a key press and the eye
gaze is minimized 540 ms after the key press, at a distance of 294
pixels. The corresponding ∆x and ∆y for the same moment are -39
and 239 pixels, respectively. The difference between touch typists
and non-touch typists can be explained: non-touch typists have to
look at the keyboard far more often that touch typists, therefore
the ∆y is substantially greater as they look down.

As the eyes move quickly when typing, we examine the gaze-
caret distance at times surrounding the key press. Contrary to clicks
and cursor movements, the distance between key presses and gaze
is shortest after the event has occurred. Even touch typists might
look toward the character they just inserted after a short delay. At
that time, on average, touch typists look to the left of the caret,

which agrees with Johansson et al.’s finding [2010]. Since our study
was conducted in English, where text is inserted from left to right,
we expect that users examine the text they have just written as they
type new characters, e.g., to confirm correct spelling. Regardless of
their ability to touch type, participants on average looked below
the inserted character. The distance on the y-axis is greater for
non-touch typists. Note that the eye tracker can only identify the
area that the fovea of the eye is focusing on. In practice, the user
can still recognize characters and words within a certain radius
from the foveal point of focus.

For touch typists, Figure 4, right, shows the ‘visual check’ for
the typed keystroke appearing on the screen by the valley in the
distance which occurs 210 ms after a key press. For non-touch
typists, Figure 4 shows gaze looking down from the caret towards
the keyboard about 200 ms before the key press.

Among touch typists, there is little variation along the y-axis;
this is not the case for non-touch typists, who look below the caret
while typing. Figure 5 illustrates this by comparing one touch and
one non-touch typist as they perform the same writing task. The
touch typist reliably looks close to the location of the caret while
they type, but the non-touch typist alternates their gaze between
the caret location on the screen and the keyboard. Note that these
are example typists and other typists had a range of glance patterns
and timings, making it difficult to detect them solely by thresholds.

5 IDENTIFYING TOUCH-TYPISTS
With this new understanding of behavioral differences across touch
and non-touch typists, we examine whether we can automatically
classify users in our dataset into these two categories. Doing so
allows applications to know which of their users are touch typists
without having to ask them explicitly. The approach is to classify
each keystroke individually as touch/non-touch typing, then to
average these classifications over time to classify the individual.

For each keystroke, one simple approach is to compute the dis-
tance between the text caret and the gaze location in screen space,
measured durin a key press. If a user is a touch typist, then the
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a) y-coordinate of Gaze, Cursor, Click, and Typing for Touch Typist (P6)
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b) y-coordinate of Gaze, Cursor, Click,
     and Typing for Non-Touch Typist (P2)

Figure 5: Gaze activity on the y-axis for a) P6, a touch typist
and b) P2, a non-touch typist writing the answer to “How is
running beneficial to the health of the human body?” Touch
typists rarely look at the keyboard so their gazemaps closely
the caret as they type, while non-touch typists look back and
forth between the keyboard and text.

distance will be small as they are looking at the screen; if they are
not, the distance will be large as they are looking at the keyboard.

Given all 56,000 keystrokes in our curated database and the
touch/non-touch typist identification, we optimize a distance clas-
sification threshold: 540 pixels on the laptop, and 724 pixels on the
desktop. These distances approximate half the screen. For the Tobii
Pro X3-120, this threshold correctly classified touch typists from
non-touch typists with 74.5% accuracy. More practically, for gaze
predictions from the WebGazer open source online webcam eye
tracker, this classifier is 62.5% accurate. Thus, this simple heuristic is
insufficient, so more complex behaviors or gaze errors are present.

We improve upon this baseline by including gaze predictions
from one second before and one second after each key press event.
We concatenated these predictions from the over the keystrokes
in our dataset and trained a classifier using auto-sklearn [Feurer
et al. 2015]. Auto-sklearn is an automated machine learning toolkit
which selects the best classification model for a given problem.
Models were evaluated using a randomly-selected test set from our
database, with five-fold cross validation. A random forest classi-
fier was most successful. With gaze data from the Tobii eyetracker,

this model achieved 92% accuracy, while with gaze predictions
from Webgazer, this model achieved 91% accuracy. For compari-
son, this accuracy approximately matches that of our participant
self-reported touch/non-touch typing values, in which 46/51 par-
ticipants correctly self-reported their touch typing ability (verified
visually by the experimenter).

6 TYPING FOR GAZE ESTIMATION
So far, we have examined the alignment between clicks, cursor
movements, key presses and gaze, and demonstrated that their
combination can automatically identify touch typists. Next, we use
this knowledge to improve an application: WebGazer [Papoutsaki
et al. 2016], an open source JavaScript-based webcam eye tracker.

WebGazer makes assumptions about where the user is looking
by using user interactions as a proxy for gaze. Currently, WebGazer
uses a facial detection library to identify the face and eyes of the
user in real time and continuously trains a model that maps the gaze
to the screen by matching the eye appearance to known interaction
locations. Its basic regression model, a ridge regression, considers
the location of clicks as permanent training points based on the
assumption that the gaze is strongly aligned with the location of
the cursor at the moment of an intentional action such as of a click.
When it comes to cursor movements, WebGazer adds them only
temporarily (for less than a second) to its regression model; cursor
movements often do not follow the gaze activity, e.g., when push-
ing the cursor aside while reading text and given their magnitude
compared to clicks, they could wrongly steer the gaze estimations.
The analysis of our dataset further supports those assumptions,
with the gaze and cursor distance being minimized right before a
click and the cursor following the eye more loosely. We call this
baseline model currently in WebGazer the “Cursor Model” since it
primarily uses cursor features as a proxy for eye gaze.

We altered WebGazer so that it can accept the offline webcam
video feed that we collected for every task page in the study dataset.
This way the results could be deterministic and computed efficiently
compared to WebGazer’s usual live webcam mode. We also sim-
ulated the collected user interaction logs and synchronized them
with the corresponding video frames. This allows us to replicate
the entire user study as if it happened in real time, with WebGazer
predicting the point of gaze given the recorded click and cursor
interactions and the corresponding appearance of the detected eyes
in the offline videos.

After applying WebGazer on the curated dataset, we discovered
that its facial feature detection library clmtrackr [Mathias 2014]
failed to properly apply the facial contour on the videos to some
participants. Out of the 51 participants, 22 had faces that could not
be consistently detected by the detection library. As the problem of
facial detection is outside of the scope of this paper, we refrained
from investigating the reasons that clmtrackr failed in these in-
stances and leave it as future work. Nevertheless, we observed that
it performed poorly under uneven lighting conditions and on par-
ticipants with darker skin color. Even across the 29 participants
where facial feature detection was successful, the facial model that
clmtrackr fits often failed to align correctly for a few seconds, espe-
cially when the participant moved or their face partially came out
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Figure 6: The WebGazer baseline Cursor Model is applied
during the Dot Test and Final Dot Test tasks after being
trained explicitly by at least 9 clicks. The Final Dot Test ap-
pears about twentyminutes after the Dot Test. The boxplots
illustrate the prediction error of theCursorModel (using the
Tobii Pro X3-120 gaze estimations as ground truth).

of the webcam field of view. The size of the dataset is not varied
enough to apply meaningful between-subject comparisons.

As a first step, we applied the Cursor Model on the two pages
hosting the Dot Test and the Final Dot Test for each of the 29 par-
ticipants. Since the task on the Dot Test page is to successfully click
at the center of a circle appearing in 9 locations, each participant
will click at least 9 times. We use these clicks to train WebGazer.
Following this step, we evaluate its prediction error during the Final
Dot Test, where participants just observe the stimulus moving on
its own around the screen. It is worth noting, that working with
offline videos allows us to train and test WebGazer using the dataset
videos in any order. For example, in practice, the Final Dot Test
would have happened approximately twenty minutes after the Dot
Test, but we still use it as an evaluation step, since it allows us to
focus on the basic functionality of WebGazer. Nevertheless, during
this timespan the participants have moved in their seat, changed
their posture, the lighting is not the same, etc. These factors can
affect the reported prediction error, both by making the Tobii Pro
X3-120 eye tracker less reliable as the ground truth, and leaving
less informative parameters in the WebGazer model.

Figure 6 illustrates in boxplots the distribution of the prediction
error during the Dot Test and Final Dot Test for the baseline Cursor
Model regression of WebGazer. The prediction error is calculated as
the Euclidean distance between the prediction made by WebGazer
and the corresponding prediction from Tobii Pro X3-120. Since
their sampling rates differ, we group all predictions into 10 millisec-
ond bins. The error is translated from pixels to physical distance
(centimeters) according to the pixel density of the PC monitor and
laptop screens. The average prediction error is 8.24 cm during the
Dot Test and 12.18 cm during the Final Dot Test. As expected, the
error during the Final Dot Test is higher.

Figure 7 shows the gaze activity of P46 during the Dot Test across
the x and y axes. Similarly, Figure 8 shows the gaze activity of the
same participant during the Final Dot Test. We observe that the
Cursor Model traces the eye gaze closely. These figures show that

x-coordinate of WebGazer Cursor Model

a) Dot Test

y-coordinate of WebGazer Cursor Model

b) Dot Test

Figure 7: Gaze activity in a) the x and b) the y-axis, as pre-
dicted by Tobii (solid blue) and the baseline Cursor Model
of WebGazer (dashed orange) during the Dot Test for partic-
ipant P46. The 9 locations of the stimulus are shown in red.

there is alignment between user interactions and eye gaze during
the two Dot Test tasks.

As a next step, we explored typing as a new cue to represent gaze.
WebGazer’s baseline Cursor Model uses mouse cursor interaction
to map eye appearance to screen locations. We attempted to use
key presses as equivalent interactions to cursor movements by
including the caret location in the regression model during those
instances—this is the Cursor+TypingModel. A key press contributes
as training when the user is actively typing and for half a second
afterwards. This approach prevents over-training the regressor as
would happen if all key presses were added permanently, as they all
derive from very similar screen locations. We used different tasks
from our dataset to evaluate the effectiveness of this approach. In
addition to the Dot Test and Final Dot Test, we used the writing
portion of the “How is running beneficial to the health of the human
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WebGazer Cursor Modelx-coordinate of 

a) Final Dot Test

y-coordinate of WebGazer Cursor Model

b) Final Dot Test

Figure 8: User interactions along a) the x and b) the y-axis, as
predicted byTobii (solid blue) and the baselineCursorModel
of WebGazer (dashed orange) during the Final Dot Test for
participant P46. The stimulus (red) appears for 3 seconds in
each of the 9 locations within a 3 × 3 grid. WebGazer’s base-
line Cursor Model was only trained during the Dot Test.

body?” question, with the writing task placed between the two dot
tests as a task comprising typing that trained the model.

Figure 9 breaks down the differences between the Cursor Model
and the Cursor+Typing Model when taking into account one’s
ability to touch type. On average, the Euclidean distance (error)
between WebGazer’s and Tobii Pro X3-120’s predictions for touch
typists dropped from 7.77 cm to 6.55 cm (16%). An independent-
samples t-test revealed a significant difference in the error for the
Cursor (M = 7.77, SD = 7.12) and the Cursor TypingModel (M = 6.55,
SD = 7.10); t (136158)=31.65, p<0.01, d=0.17. Similarly, incorporating

Figure 9: Euclidean distance between WebGazer and Tobii
Pro X3-120 predictions during the writing tasks, split across
a) touch typists and b) non-touch typists. Incorporating typ-
ing improves the gaze estimation for both types of users.

key presses decreased the error across non-touch typists from 12.78
cm to 11.76 cm (8%). A t-test revealed significant difference for the
Cursor (M = 12.78, SD = 9.11) and the Cursor Typing Model (M =
11.76, SD = 10.84); t (80812)=14.45, p<0.01, d=0.10. Overall, knowing
about typing behavior and its relation to eye gaze is a feature that
can then be used to improve eye tracking. TheWebGazer eye tracker
can improve its prediction of where the user is looking, which can
in turn lead to more impactful eye tracking applications.

7 CONCLUSION
Typing is a required task for most computer use, and it is important
to better understand the different processes that occur as users
create text. This work adds to the understanding of human attention
and behavior by analyzing the relationship of typing and gaze. To
that end, we provide and analyze a benchmark dataset with a variety
of tasks, including target selection, calibration, search, and writing.

The analysis of the data confirmed prior knowledge about the
spatial alignment of gaze with cursor movement and clicks. We also
show the relationship of the caret’s location during key presses
and that of the gaze, and focus on differences across touch typists
and non-touch typists. These differences are substantial, such as
the habit of checking written text for touch typists and the habit
of glancing down before a key press for non-touch typists. The
behavioral patterns inform a method to automatically distinguish
between the types of users. We use these findings to incorporate
typing as a user interaction in WebGazer, a browser-based eye
tracker, by altering its underlying model.
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