
EasyPZ.js: Interaction Binding For Pan and Zoom Visualizations
Michail Schwab*

Khoury College of Computer Sciences
Northeastern University

James Tompkin†

Brown University
Jeff Huang‡

Brown University
Michelle A. Borkin§

Khoury College of Computer Sciences
Northeastern University

Capture Events Identify Gestures

Automatic Scaling
Add one aribute

Manual Scaling
Load More Details

Touch & Mouse

BrushOrtho

RubHold

2x CliPin Wheel

Use EasyPZ Pan & Zoom on Visualizations

Aggregate

Bookmarklet
No Coding At All

<html>

<js>

SVG WebGLCanvas

SVG

SVG

Figure 1: EasyPZ captures mouse and touch events, aggregates the events, and identifies pan and zoom gestures, such as pinch
or brush zoom. These gestures can be used for pan and zoom in three different ways: 1. The EasyPZ bookmarklet temporarily enables
pan and zoom SVG visualizations without any code changes. 2. The automatic mode of EasyPZ permanently enables pan and zoom
on a SVG visualization with a simple HTML change. 3. In the manual EasyPZ mode, a SVG, canvas, or WebGL visualization can
respond to pan and zoom by providing detail on demand, such as showing state borders when zooming in to a country.

ABSTRACT

The creation of data visualizations has become easier as the skill-
barrier to our tools has decreased. However, adding interactivity,
such as gestures for pan and zoom, still requires significant coding
expertise. We introduce an open-source library—EasyPZ.js—for the
creation of multi-scale (pan and zoom) visualizations across desktop
and mobile devices. EasyPZ is fully customizable and extendable
with flexible options for interaction design. For example, it is easy to
choose gestures which are compatible with selection interactions such
as clicking. EasyPZ can be enabled on any SVG-based visualization
on the web with one line of code, or by simply clicking a bookmark
without requiring commitment to code changes. With this library,
we contribute ways for the visualization community to more easily
author interactive multi-scale visualizations.

Keywords: Human-computer interaction, SVG, visualization, inter-
action binding, pan, zoom, navigation, toolkit.

1 INTRODUCTION

In recent years, many tools have been published in the data
visualization community to simplify the creation process of custom
data visualizations (e.g., [5, 19]). Some tools even allow the creation
of complex data visualizations without any coding at all [10, 12].
However, the availability of simple-to-use interaction techniques for
these visualizations has not kept pace: even enabling the default pan
and zoom in D3.js requires at least 6 lines of code.

Pan and zoom interactions are critical as they allow us to explore
multi-scale data on fixed-size displays [7]. As large datasets increase
in prevalence, visualization creators will increasingly be asked
to consider how best to design both visualization appearance and
interaction behavior, especially for mobile devices, where small
screens pose navigation challenges for data visualizations.

For interaction, there are many implementations for pan (scroll),
zoom in, and zoom out operations, with different compatibilities

*email: michaschwab@ccs.neu.edu
†email: james tompkin@brown.edu
‡email: jeff huang@brown.edu
§email: m.borkin@neu.edu

across mobile and desktop. Different interaction designs can have
dramatic effects on performance [18], able to turn an interface from
one that frustrates users to one that supports them. While the HCI
community produces novel interaction designs for pan and zoom,
e.g., [3, 15], the visualization community benefits less from these
findings due to opaque or closed-source implementations. The lack of
an open library for such interactions makes it harder for techniques to
bridge between the fields, and for more efficient research techniques
to be applied in software generally.

To address these challenges, we introduce an extensible open-
source pan and zoom library to create interactive multi-scale data
visualizations across mobile and desktop devices. EasyPZ.js can be
enabled on most data visualizations on the Web by simply clicking
a fully customizable bookmarklet, or by adding an “easypz” HTML
attribute to an SVG element. EasyPZ offers a simple way to test, tune,
and use interaction techniques for multi-scale visualizations.

2 RELATED WORK

2.1 Multi-scale Interaction Techniques

A large body of work exists on interaction techniques for pan and
zoom, and new techniques are frequently proposed. Early multi-scale
or zoomable interfaces, such as Pad, Pad++, and MuSE [4, 8, 16]
defined zoom based on holding a mouse button down or dragging
a slider. The interaction design space has been explored through
brush or marquee zoom, anchor or ortho zoom [1, 3], pinch
to zoom [11], elastic interaction for precise manipulation [14],
pan-speed-dependent zooming [9], flick pan or zoom [17], and cyclic
gestures based on rubbing [15] or circles [13].

While many techniques exist, there is little overview to inform
data visualization creators about which techniques to use. This
lack of overview and accessibility of techniques can in part be
attributed to the difficulty of contributing a new technique to a larger
framework during or after the development process. Since there is
no standardized way to create, combine, tune, distribute and share
techniques, they are often implemented in isolation with closed
source, which makes reproduction and comparison difficult. This can
hinder adoption, which in turn slows progress because techniques
are not being used or systematically compared.

2.2 Data Visualization Enhancer Libraries
Some works create JavaScript libraries which can be added to existing
data visualizations to enhance their functionality. In particular,
VisDock [6] has enabled a large set of features on existing data
visualizations, such as advanced selection techniques and even
pan and zoom. However, VisDock cannot be injected into existing
visualizations automatically and is not designed to work seamlessly
with the existing visualization, but instead adds a predefined
panel with these functions. This can be useful, but limits the data
visualization creator’s ability to freely design the user interface.

2.3 Pan and Zoom Libraries for Data Visualization
Implementing multi-scale interaction is sometimes a tricky and
nuanced affair, and so some web-based libraries exist to ease pan and
zoom interaction implementation. D3.js [5] aids the implementation
of basic pan and zoom functionality on a selection of nodes with
cross-platform compatibility and the ability to constrain the amount
of panning. Primarily for touch on mobile, Hammer.JS [2] provides
access to gestures such as panning, zooming, rotating and swiping,
although, the transformation must be implemented manually given
the input. Both approaches require manual coding in JavaScript to
implement different techniques, with few interaction methods, fixed
parameters, and limited extensibility.

3 EASYPZ LIBRARY

We contribute EasyPZ.js, an open-source pan and zoom JavaScript
library for mobile and desktop computers. It comprises an
interchangeable set of 32 pan and zoom interaction techniques
with a consistent underlying parameterization, where each exposes
configurable parameters. EasyPZ is independent of any visualization
and can be used on arbitrary 1D sliders, e.g., to control very long
videos, on timelines, or on arbitrary 2D spaces, e.g., for pan and zoom
on maps. EasyPZ is compatible with SVG (e.g., D3.js), Canvas, and
WebGL (2D); in general, it is compatible with any Web environment
in which scale and translation can be set.

3.1 Design Considerations and Features
Drawing from Section 2, the main challenges faced in multi-scale
interaction are that (1) using different pan and zoom techniques or
varying their parameters is difficult, (2) creating useful techniques
is challenging, (3) there is insufficient overview or systematic
evaluation, and (4) many data visualization creators only share static
versions of their SVG visualizations online (e.g., reddit). To address
these challenges, we declare the following system requirements:

Ease of Use [Ease]: An easy to use system simplifies access and
use of pan and zoom techniques (1), simplifies the process of using
existing techniques in data visualizations (2), and helps visualization
creators that have scalable visualizations but do not have the skill
or time to implement them in a multi-scale environment (4).

To ease use for non-developers, EasyPZ provides a set of pan and
zoom techniques including newly-created techniques. These can
enhance an existing visualization via a bookmarklet (i.e., no code
changes - see “Bookmarklet” in Fig. 1), which dynamically ‘injects’
EasyPZ into most SVG-based data visualizations on the Web. This
bookmarklet can be customized via a Webpage to use one’s favorite
interaction methods and parameters, e.g., to address accessibility
needs such as slowing down zoom speed in case of lower motor
control. Automatically translating and scaling visualization content
is possible on SVG visualizations, as they are vector-based, but not
on canvas or WebGL visualizations, as they are pixel-based and
manipulations would introduce blur. Hence only manual scaling is
compatible with all visualization drawing surface types (see Fig. 1).

To ease development, EasyPZ simplifies low-level event handling
complexity by providing utility functions such as FRICTIONINTER-
ACTION() and automatically applying computed transformations
to data visualizations while respecting pre-existing transformations
of elements. Techniques created with EasyPZ can be distributed as
a single file which extends EasyPZ for others to use.

DOM

Visualization
JS Code

Slot

DOM DOM DOM

Interaction
Code

With Code
Access

Adding Multiscale Interactions to Visualizations

Data,
Interaction
Binding

Status Quo With EasyPZ:
DOM-level interaction binding

Visualization
JS Code

Interaction
Code

Without Code
Access

In
te

ra
ct

io
n

B
in

d
in

g

With Code
Access

Without Code
Access

VIS JS
Code

EasyPZ

D
a
ta

B
in

d
in

g

VIS JS
Code EasyPZ

D
a
ta

B
in

d
in

g

C
o
m

p
a
ti

b
le

In
te

ra
ct

io
n

B
in

d
in

g

D
a
ta

B
in

d
in

g

C
o
m

p
a
ti

b
le

In
te

ra
ct

io
n

B
in

d
in

g

Figure 2: Adding multi-scale interactions to visualizations with and
without EasyPZ’s DOM-level interaction binding. Left: In the status quo,
interactions must be manually implemented within the visualization
code, which does not work if the code is not available, e.g., Web
visualizations or SVG-based visualizations without code. Right:
EasyPZ’s DOM-level interaction binding allows interaction without
access to the visualization code, while ensuring compatibility (♥).

Modular and Extensible [ModExt]: Modular techniques can
be shared, which simplifies access to techniques (1) and makes it
easier to create an overview of techniques, for example by simply
listing each technique’s name, and to evaluate them (3). Creating
a modular technique for an extensible platform is also easier than
manual implementation (2). Better techniques facilitate exploration
of multi-scale data (4). EasyPZ is implemented in a modular way.

Standardization [Standard]: A successful system should
standardize pan and zoom techniques so systematic evaluations
can be completed in a repeatable way (3). EasyPZ standardizes
parameters across techniques (e.g., Schwab et al. [18]). This makes it
easy to tune interactions ([Tune]) and their parameters as techniques
can be swapped in and out on-the-fly, e.g. to enable faster zooming,
or to handle physical impairments such as inability to use the mouse
wheel or to click twice within some time frame. This standardization
allows EasyPZ to help with finding and tuning interactions which
are compatible: both self-compatible and compatible with existing
visualization interactions such as selection. By swapping in and
out individual techniques, their sometimes obscure compatibilities
become clear. Further, techniques are often designed with a specific
user group or set of tasks in mind, e.g., beginner or expert users may
have different requirements. EasyPZ allows such requirements to
be tested on-the-fly, and exported to data visualizations immediately.

3.2 Implementation
EasyPZ consists of three parts: The extensions, core library, and
the loader. The extensions make up all pan and zoom interaction
techniques by declaring names, parameters and event listeners, and
returning the change in transformation that an event, such as mouse
move, has caused. The core library keeps track of the total transfor-
mation, sends enabled extensions the latest data, such as current and
previous mouse positions, and provides utility functions to simplify
momentum-based interactions or to maximize compatibility. The
loader uses this total transformation to apply it to any EasyPZ-enabled
element, be it enabled via JavaScript, via bookmarklet, or HTML,
and does this in a manner that respects pre-existing transformations
by computing a combined transformation.

Fig. 2 shows the difference between traditional interaction
implementation and EasyPZ’s DOM-level interaction binding.
Traditionally, adding multi-scale interactions to visualizations
requires manual work to add an interaction implementation to the
visualization’s code such that the visualization’s code base handles

both the data binding as well as the interaction binding. Depending
on the visualization’s structure and existing transformations, this
can be challenging, and is impossible if there is no access to a code
base, e.g., for visualizations in the Web, or for static SVG-based
visualizations that do not have corresponding JavaScript code.

EasyPZ solves this problem by bypassing the visualization’s code.
Where the visualization’s code handles data binding using D3.js or
another library, EasyPZ handles the interaction binding by accessing
the DOM directly while respecting existing transformations.

3.3 Technical Design Choices
Additive and Multiplicative Transformations: If top level SVG
elements already use a transformation as part of the visualization,
then this would clash with the dynamic transformation for pan and
zoom. EasyPZ applies its transformations on top of any existing SVG
transformations, e.g., multiplicative with existing scale transforms
and additive to existing translation transforms. This works for any
ongoing existing transformations, too: EasyPZ is compatible with
visualizations that actively change transformations of elements,
such as animated tree maps. EasyPZ does not insert additional
elements for simplifying the transformation operation to not change
the structure of the SVG, which could break existing selectors. This
makes adding pan and zoom easy [Ease].

Conservative Activation: To capture all possible pan events, a
pan implementation could wait for a mouse down event, activate, and
then listen for mouse move events until the mouse key is released.
Unfortunately, such an implementation would be incompatible with
many other interactions. For example, hold zoom would also trigger
this pan implementation, and users would pan and zoom at the same
time when trying to zoom by holding down the mouse and moving the
mouse for zoom target adjustments. EasyPZ tries to be as compatible
as possible with existing interactions and never prevents JavaScript
events to be propagated. This is facilitated by EasyPZ’s utility
functions, such as CALLBACKAFTERTIMEOUTORMOVEMENT,
which allows specifying a minimum or maximum pointer travel
distance within a time frame to determine whether to react to a
possible gesture. For example, hold zoom triggers only if the pointer
is not moved more than 3 pixels in the first 300 ms of the gesture,
whereas drag pan requires a minimum movement of 3 pixels in the
first 300 ms of the gesture. This enables these two techniques to be
compatible with one another, whereas otherwise they would both
trigger at the same time and cause unintuitive behavior. Still, some
techniques are simply incompatible because they use the same input
gesture, such as drag pan and brush zoom.

3.4 Using EasyPZ with SVG
To add zoom to an existing visualization, its top-level SVG
elements need to be transformed. To do this, other libraries
require visualization creators to specify a function to be executed
when users zoom. In this function, visualization creators would
assign the current transformation to the top level elements of their
visualization. With EasyPZ, adding pan and zoom interactions to
SVG visualizations, like those built with D3.js, does not require
any JavaScript code [Ease]. EasyPZ achieves this by automatically
applying the transformation to the top level SVG elements by default.
Pan and zoom can be added with an HTML attribute in the SVG
tag. In Listing 1, EasyPZ controls the top-level transformation of
the SVG, and allows us to pan and zoom a circle.

<svg easypz>
<circle cx="100" cy="70"

r="25" fill="#f00"></circle>↪→

<text x="100" y="75">PZ!</text>
</svg>

PZ!

Listing 1: EasyPZ pan and zoom circle, with motion depicted as
horizontal lines. jsFiddle at https://tinyurl.com/easypz-pz.

By default, EasyPZ applies the transformation to the top level
elements in the SVG using the CSS element selector “svg > *”.

Any valid selector can be used in the ”applyTransformTo” attribute,
including element classes. In this way it is possible to exclude
certain elements, such as legends, and to let EasyPZ apply the
transformations only to the chosen elements.

Modular: EasyPZ’s technique implementations are fully modular,
which helps standardization, sharing of techniques, and extensibility
of the library [Standard, ModExt]. By default, EasyPZ enables a
common set of compatible pan and zoom interactors: we assign drag
pan, hold zoom in, click hold zoom out, wheel zoom, pinch zoom,
double click zoom in, and double right click zoom out. However, users
can ‘mix and match’ interaction techniques. For example, we might
want to enable flick pan with press-and-hold zoom in and double-click
zoom out (Listing 2). Because of this interchangeability, visualization
creators can choose between techniques that are compatible with
other interactions on the website, and swap the activated techniques
without any other changes necessary.

<svg easypz='{"modes": ["FLICK_PAN",
"HOLD_ZOOM_IN", "DBLCLICK_ZOOM_OUT"]}>↪→

<!--- Visualization --->
</svg>

Listing 2: Modular interactors with configurable parameters.

Customizable: Many interactors are customizable [Standard, Tune].
Interactions can also be scale and bounds limited so that users do
not become lost, shown in Listing 4.

<svg easypz='{"options": { "minScale":
0.8, "maxScale": 10, "bounds": { "top": -50,
"right": 50, "bottom": 50, "left": -50 }} }'>

↪→

↪→

<!--- Visualization --->
</svg>

Listing 3: Setting scale and translation bounds.

Progressive Loading: Through EasyPZ’s “onTransformed”
function, visualizations can react to transformation changes. For
example, as indicated in Fig. 1, more detailed map data can be loaded
when a user zooms in:

<svg easypz='{"onTransformed": "updateVis"}'>
<!--- Visualization --->

</svg>
<script>
function updateVis(transform) {
if(transform.scale < 0.8) {
// Load more data, such as state lines.

}
// Rescale SVG

}
</script>

Listing 4: Setting scale and translation bounds.

Manual Implementation with JavaScript, D3.js, and canvas
Advanced visualizations may wish to react to zooming by re-
rendering paths in more detail, update axes and scales, or change
map projections. In these cases, more control over the zoom behavior
is needed. To address this need, EasyPZ provides access to an
“onTransformed” function, which is called when the user zoomed
or panned. This is shown in Listing 5.

new EasyPZ(visEl, function(transform) {
// Use transform.scale, .translateX,

.translateY to update your visualization.↪→

});

Listing 5: Manual EasyPZ Pan and Zoom, e.g. for D3.js or canvas use.
The callback function is called whenever a user panned or zoomed
using any of the interaction methods specified.

https://tinyurl.com/easypz-pz

Figure 3: The EasyPZ Bookmarklet allows activating advanced pan
and zoom techniques on visualizations on the Web with a simple click.

Here, EasyPZ provides the transformation and allows visualization
creators to use this information to update their visualizations as
desired. They still benefit from all of EasyPZ’s features, including
the flexibility to switch between methods and set their settings,
customizability, and extendability. More information on the
manual mode, including examples for updating D3.js scales and
projections, and usage in canvas, can be found in documentation at
github.com/michaschwab/easypz/wiki.

3.5 Implemented Interactions

With many methods implemented, visualization creators have more
options to choose techniques compatible with other interactions, and
have the opportunity to address more specific user needs, such as
more advanced techniques being required for experienced users.

Pan: EasyPZ comes with standard desktop dragging with a linear
transfer function (drag pan), standard mobile dragging with flick
momentum (flick pan [17]), using the scroll wheel on a desktop
mouse or a scroll gesture on a touchpad (scroll pan), and using the
touchscreen with a two-finger motion (two-finger pan).

Zoom: EasyPZ comes with double click or tap with a primary or
secondary button (2x click zoom), holding down a button or pressing
a touchscreen without releasing the finger (hold zoom [4, 16]),
using the scroll wheel on a desktop mouse or a scroll gesture on a
touchpad (scroll zoom), two-finger pinch to zoom (pinch zoom [11]),
drag-selecting a rectangular zoom region, (marquee zoom or brush
zoom), dragging along the orthogonal axis for continuous zoom
granularity control (‘dynamic zoom’ or ortho zoom [1, 3]), and the
cyclic gesture of bi-directional rubbing (rub zoom [15]), e.g., where
horizontal rubbing zooms in and vertical rubbing zooms out.

3.6 Bookmarklet

As a result of DOM-level interaction binding, where the interactions
do not have to be tied to a visualization’s JavaScript code, we can
inject interactions into existing visualizations on the Web. Our
EasyPZ browser bookmarklet, shown in Fig. 3 and demonstrated in
our supplemental video, allows enabling pan and zoom on an existing
SVG-based visualization during that session. The bookmarklet will
inject the EasyPZ library into the website, detect any SVG-based
visualizations, and enable EasyPZ with standard pan and zoom
techniques. Users can even create customizable bookmarklets,
through which users have control over technique selection and
parameter tuning, e.g., to create designs for improved accessibility.

The bookmarklet can be compared with native browser zoom,
which can also enlarge SVGs. Our approach has the following
advantages: First, it shows zoom behavior as enabled through a
JavaScript library, and so serves as an accurate preview of permanent
zooming. Second, the zoom position cannot be specified with native
browser zoom – every zoom operation requires re-orienting. Third,
the EasyPZ bookmarklet preserves website content and font size
and does not cause page layout disruptions. Fourth, the bookmarklet
ensures that people do not get lost by limiting pan and zoom scope.
These advantages are visible in the supplemental video.

4 DEMONSTRATION OF UTILITY

To evaluate the coverage of our toolkit for existing visualizations, we
sought a set of visualization examples from bl.ocks.org, mainly
used by visualization developers (about 4 million unique visitors
per year), and reddit.com/r/dataisbeautiful, mainly used by
visualization viewers (13.3 million subscribers).

bl.ocks.org: We tested EasyPZ on the first 50 available examples
on bl.ocks.org, sorting alphabetically. Of the 50, 39 worked with
EasyPZ out of the box with the EasyPZ bookmarklet (see “Book-
marklet” in Fig. 1). Of the remaining 11, 8 did not work automatically
because they used canvas or HTML instead of, or in combination
with, SVG, but EasyPZ could work using a manual event handler with
about 5 lines of code (see “Manual Scaling” in Fig. 1). Two visual-
izations had some interaction incompatibilities, such as already using
zoom, where EasyPZ could be useful with a smaller set of additional
techniques. The final visualization had a combination of preexisting
transformations EasyPZ is not yet compatible with: rotated, translated
bars. We demonstrate some of the examples at demos.easypz.io.

reddit.com/r/dataisbeautiful: We contacted the authors of
20 of the most viewed visualizations on the dataisbeautiful
subreddit, 8 of which shared their source vector images with us. We
demonstrate these more interactive beautiful data visualizations at
datais.easypz.io. In all 8 cases, EasyPZ worked immediately.

Adoption: Since making EasyPZ.js available in January 2018,
a first systematic evaluation of pan and zoom techniques has been
published by the authors of this paper using EasyPZ.js [18]. As of
July 2019, EasyPZ was downloaded 3,704 times from NPM and
starred 67 times on GitHub.

5 DISCUSSION AND LIMITATIONS

EasyPZ automates the enabling of multi-scale interactivity as
much as possible. However, developers still need to write manual
implementations to apply transformations to advanced visualizations,
such as to load data at different levels of granularity for performance.
Still, with EasyPZ, authors do not need to implement the interactions
or events, and are well equipped to change or extend the pan and
zoom interactions they allow. This is helpful to allow mobile use,
or to enable physically impaired persons.

Many existing technique implementations are not available, and
many are poorly documented. While EasyPZ aids standardization for
these techniques, the community must agree on a technique definition
to confirm an implementation and its parameters, and use this def-
inition to provide fair technique comparisons to inform visualization
creators. While EasyPZ already supports many techniques, there are
still techniques missing from EasyPZ. We hope that with documenta-
tion and the authoring tools we provide, interaction designers will use
EasyPZ to contribute their interactions to an open-source platform.

Finally, even though we can add interactive control to static visual-
izations, rendering speed is still a limiting factor. A visualization too
complex to draw at interactive rates will not be sped up by EasyPZ.
We leave improving rendering performance for future work.

6 CONCLUSION

We have presented EasyPZ, an open-source JavaScript library that
provides ways for the data visualization community to benefit from
interaction improvements development in the human-interaction
community. EasyPZ improves interaction development, standard-
ization, tuning, evaluation, distribution, deployment, tuning, and
adoption. By streamlining this process, data visualization users can
leverage more advanced techniques that enable faster navigation,
can choose interactions for more beginner or expert users or address
physical limitations, and overall improve user experience.

ACKNOWLEDGMENTS

The authors thank Alex Ahmed, Cody Dunne, Aditeya Pandey,
and Yixuan Zhang for their helpful feedback on this paper. This
work was supported in part by a Northeastern University Tier 1
Interdisciplinary Grant, and by the Khoury College of Computer
Sciences at Northeastern University.

http://github.com/michaschwab/easypz/wiki
http://bl.ocks.org
http://reddit.com/r/dataisbeautiful
http://bl.ocks.org
http://demos.easypz.io
http://datais.easypz.io

REFERENCES

[1] C. Ahlberg and B. Shneiderman. The alphaslider: A compact and rapid
selector. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’94, pp. 365–371. ACM, New York, NY,
USA, 1994. doi: 10.1145/191666.191790

[2] J. T. Alexander Schmitz, Chris Thoburn. Hammer.js.
[3] C. Appert and J.-D. Fekete. Orthozoom scroller: 1d multi-scale

navigation. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’06, pp. 21–30. ACM, New York,
NY, USA, 2006. doi: 10.1145/1124772.1124776

[4] B. B. Bederson and J. D. Hollan. Pad++: A zooming graphical interface
for exploring alternate interface physics. In Proceedings of the 7th
Annual ACM Symposium on User Interface Software and Technology,
UIST ’94, pp. 17–26. ACM, New York, NY, USA, 1994. doi: 10.
1145/192426.192435

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics,
17(12):2301–2309, Dec. 2011. doi: 10.1109/TVCG.2011.185

[6] J. Choi, D. G. Park, Y. L. Wong, E. Fisher, and N. Elmqvist. Visdock: A
toolkit for cross-cutting interactions in visualization. IEEE Transactions
on Visualization and Computer Graphics, 21(9):1087–1100, Sept 2015.
doi: 10.1109/TVCG.2015.2414454

[7] A. Cockburn, A. Karlson, and B. B. Bederson. A review of
overview+detail, zooming, and focus+context interfaces. ACM Comput.
Surv., 41(1):2:1–2:31, Jan. 2009. doi: 10.1145/1456650.1456652

[8] G. W. Furnas and X. Zhang. Muse: A multiscale editor. In Proceedings
of the 11th Annual ACM Symposium on User Interface Software and
Technology, UIST ’98, pp. 107–116. ACM, New York, NY, USA, 1998.
doi: 10.1145/288392.288579

[9] T. Igarashi and K. Hinckley. Speed-dependent automatic zooming for
browsing large documents. In Proceedings of the 13th Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’00, pp. 139–
148. ACM, New York, NY, USA, 2000. doi: 10.1145/354401.354435

[10] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic, and
H. Pfister. Data-driven guides: Supporting expressive design for informa-
tion graphics. IEEE Transactions on Visualization and Computer Graph-
ics, 23(1):491–500, Jan. 2017. doi: 10.1109/TVCG.2016.2598620

[11] M. W. Krueger, T. Gionfriddo, and K. Hinrichsen. Video-
place—an artificial reality. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’85, pp.
35–40. ACM, New York, NY, USA, 1985. doi: 10.1145/317456.317463

[12] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data illustrator: Augmenting vector design
tools with lazy data binding for expressive visualization authoring.
In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems, CHI ’18, pp. 123:1–123:13. ACM, New York, NY,
USA, 2018. doi: 10.1145/3173574.3173697

[13] S. Malacria, E. Lecolinet, and Y. Guiard. Clutch-free panning and
integrated pan-zoom control on touch-sensitive surfaces: The cyclostar
approach. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’10, pp. 2615–2624. ACM, New York, NY,
USA, 2010. doi: 10.1145/1753326.1753724

[14] T. Masui, K. Kashiwagi, and G. R. Borden, IV. Elastic graphical
interfaces to precise data manipulation. In Conference Companion on
Human Factors in Computing Systems, CHI ’95, pp. 143–144. ACM,
New York, NY, USA, 1995. doi: 10.1145/223355.223471

[15] A. Olwal, S. Feiner, and S. Heyman. Rubbing and tapping for precise and
rapid selection on touch-screen displays. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’08, pp. 295–
304. ACM, New York, NY, USA, 2008. doi: 10.1145/1357054.1357105

[16] K. Perlin and D. Fox. Pad: An alternative approach to the computer
interface. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’93, pp. 57–64.
ACM, New York, NY, USA, 1993. doi: 10.1145/166117.166125

[17] P. Quinn, S. Malacria, and A. Cockburn. Touch scrolling transfer
functions. In Proceedings of the 26th Annual ACM Symposium on User
Interface Software and Technology, UIST ’13, pp. 61–70. ACM, New
York, NY, USA, 2013. doi: 10.1145/2501988.2501995

[18] M. Schwab, S. Hao, O. Vitek, J. Tompkin, J. Huang, and M. A. Borkin.
Evaluating pan and zoom timelines and sliders. In Proceedings of
the 2019 CHI Conference on Human Factors in Computing Systems,
CHI ’19, pp. 556:1–556:12. ACM, New York, NY, USA, 2019. doi: 10
.1145/3290605.3300786

[19] H. Xia, N. Henry Riche, F. Chevalier, B. De Araujo, and D. Wigdor.
Dataink: Direct and creative data-oriented drawing. In Extended
Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems, CHI EA ’18, pp. D413:1–D413:1. ACM, New York, NY, USA,
2018. doi: 10.1145/3170427.3186471

	Introduction
	Related Work
	Multi-scale Interaction Techniques
	Data Visualization Enhancer Libraries
	Pan and Zoom Libraries for Data Visualization

	EasyPZ Library
	Design Considerations and Features
	Implementation
	Technical Design Choices
	Using EasyPZ with SVG
	Implemented Interactions
	Bookmarklet

	Demonstration of Utility
	Discussion and Limitations
	Conclusion

