
Graphstract: Minimal Graphical Help for Computers
Jeff Huang

Yahoo
Sunnyvale, CA 94089

jeffhuangillinois@yahoo.com

Michael B. Twidale
Graduate School of Library and Information Science

University of Illinois, Urbana-Champaign
Champaign, IL 61820

twidale@uiuc.edu

ABSTRACT
We explore the use of abstracted screenshots as part of a
new help interface. Graphstract, an implementation of a
graphical help system, extends the ideas of textually
oriented Minimal Manuals to the use of screenshots,
allowing multiple small graphical elements to be shown in a
limited space. This allows a user to get an overview of a
complex sequential task as a whole. The ideas have been
developed by three iterations of prototyping and evaluation.
A user study shows that Graphstract helps users perform
tasks faster on some but not all tasks. Due to their graphical
nature, it is possible to construct Graphstracts automatically
from pre-recorded interactions. A second study shows that
automated capture and replay is a low-cost method for
authoring Graphstracts, and the resultant help is as
understandable as manually constructed help.

ACM Classification Keywords
H.5.2. Information interfaces and presentation

General Terms:
Design, Documentation, Human Factors, Experimentation

Author Keywords
software help, minimal manuals, graphical abstracts

INTRODUCTION
Current software help relies substantially on textual
explanations to guide the user in performing correct
operations. Various studies have shown that users are
unlikely to read carefully, if they read help text at all [17].
Users are often looking for a quick way to make a slight
change to their work, and may be unwilling to risk the
investment of time and effort to read a lengthy explanation.
Even when users are highly motivated, conventional help is
mostly textual, which can be difficult to apply to the 2D
graphical user interface environment of the application due
to the dimensional mismatch between text and graphics.

Very little work [19] has been done on graphical minimal
manuals, a concept we believe has great potential. We have
developed methods for creating abbreviated forms of
graphical help using layered elements of the application
window, inspired both by the metaphor of textual abstracts,
and Carroll's Minimal Manuals [5,6]. The Minimal Manual
approach involves making terse manuals that guide the user
with specific tasks. The aim is to support individuals
helping themselves as well as users helping their peers. We
believe that this initial exploration of the design space of
minimalist graphical help shows great promise, not just for
better online help but as a lightweight method for
supplementing informal peer support [21].

The ideas have been developed by three iterations of
prototyping and user studies of Graphstract, a minimalist
graphical help system. An initial study of the idea of
graphical abstract help was reported earlier [10]. This paper
describes our ongoing iterative prototyping and evaluation
work. To clarify which version of Graphstract we are
discussing, the prototype described in [10] will be referred
to as GS1, and will be contrasted with two subsequent
iterations, GS2 and GS3.

CURRENT HELP FORMATS
In this section, we list formats used for software help, and
discuss the problems with each.

Text-centric Help
Printed documentation and online help attempts to combine
text and graphics but often relegates graphics to a
secondary role. Thumbnail-sized pictures of a specific
control or a relevant dialog box are used only to supplement
textual descriptions. In addition, the images in text-centric
manuals are presented as individual tokens of information,
instead of a step-by-step solution to achieve a task.

However, users may not want to spend the time and effort
reading through text [17] or may be unable to understand
the terminology used in the text help. They have difficulty
translating text from the help to widgets on the screen [12].
They can lose their place with the text instructions and miss
crucial steps [11]. Creating text help documentation is also
costly, magnified by translation costs if the application is
targeted at international markets. We think there is a better
way to create and present help information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’07, October 7-10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

Minimal Manuals
Minimal Manuals were developed to counter the lengthy
and ineffective help documentation provided with most
computer software. By severely cutting down the size of the
documentation, and providing task-oriented instructions, a
more compact type of help is developed. Minimal Manuals
have been shown to be more effective than standard
manuals [3,4,5,6,22].

Traditional Screenshots
Screenshots are frequently used when creating both online
help and paper manuals. A common example is the online
help website of Internet Service Providers, where
screenshots show how to configure an email client. They
have many advantages such as clarifying what the end user
should do, and what they can anticipate in a complex
sequence of actions [8,9]. Nevertheless, a crucial
disadvantage is that this method often involves numerous
large and complex screenshots which yield far more
information than necessary for most users. This approach
adds to perceptions of complexity, discouraging the user
from receiving help. In addition, the size and number of the
screenshots can pose a problem in understanding a task as a
whole. Because several pages are required to demonstrate a
single task, the screenshots need to be spread out to form a
coherent and holistic sense of the entire task. Spreading out
a series of screenshots, either in a (large) manual, in the
user's mind, or even on a desk is difficult. This difficulty is
particularly acute when these help-giving screenshots are
viewed on a computer, where users can only see part of the
task on the screen at once. Even then, they must repeatedly
switch between the screenshot and the application in order
to apply the help. This approach makes it harder for users to
skim the help if they are looking for just one piece of
information. File size may also be an issue depending on
the distribution method, since despite image compression,
graphics typically take up much more storage space than
text.

 Text MM SS AN GS

Support for skimming X X
No significant reading X X X X
Maps to the application interface X X X
Ease of creation X
Small spatial needs X X X X
Small file size X X X

Table 1: Comparison of Graphstract with the different
popular help formats. MM = Minimal Manuals, SS =
screenshots, AN = animations, and GS = Graphstract.

Animation or Video
Animation can be used to provide effective, detailed and
step-by-step help to complete a task [1,9,13,19]. Animation
may be excellent as a means to introduce unfamiliar ways
of working, but it may not always be the optimal way to
learn the interface [13]. Animated help does not normally
support the multiple different ways of in-depth reading,

skimming, selection, and re-reading that are possible with
conventional text and graphics. An animation makes it
difficult for users to move at their own pace, confining each
user to follow a single level of software proficiency - that
for which the animation was written. It is frustrating for the
advanced user, who may only be missing one key step of
the interaction, to have to sit through an exhaustive
description of what he or she already knows.

Additionally, although most animated help allows skipping
back and forward, by its very nature, it enforces a temporal
view of a task. Animation fails to give an explicit synoptic
representation of the task as a whole. The steps must be
watched in sequence and subsequently remembered if they
are to be perceived as a set. This hinders a user's ability to
get the bigger picture of the task. This limitation is not a
problem for someone who already understands the overall
task, but can be unnecessarily confusing for a novice user.

Animation files also take up a lot of disk space. This can be
particularly problematic in online access to the help, where
the user has to wait to download the help, potentially
deterring the user from using the help at all.

GRAPHSTRACT
Applying the Minimal Manuals approach to graphical
screenshots of the interface is the core idea of our design.
Combining the ease-of-recognition of graphical tokens with
the need to convey steps in an interaction sequence, we
developed Graphstract (short for "Graphical Abstracts").
Graphstract aims to create a single page of image tokens for
a multi-step task, so users can retain their sense of the entire
task throughout the process. Images are focused screen
captures that center on the actual control where action is
required, creating what we call graphical tokens. Individual
graphical tokens are then joined to form complex task
representations. This approach reduces information clutter
and naturally saves space. During user studies, some users
commented that the graphical tokens were analogous to
bolded text in text help. Many users said that they just skim
text help for actionable bold words. We take that concept
and transfer it to a graphical token for even easier scanning.
The graphical representations also reinforce a user's sense
that they are making progress by seeing in the help what
they are seeing in the application.

In an extreme way, this approach addresses the problem of
conventionally verbose and unread descriptions. The design
assumes that users do not go beyond one or two help
screens; they mostly skim the screen for useful information
[7]. The aim is to give the user information for which
actions to perform in a graphical environment using a
combination of clues that Graphstract presents onscreen. It
is possible to envisage versions of the Graphstract concept
that combine minimalist graphics with minimalist text. For
the purposes of this early exploration of the design space,
we chose to restrict ourselves to an extreme version of the
Graphstract concept – one that relies entirely on images
with no accompanying text at all.

Graphstract employs a metaphor of ripping out parts of
screenshots and pasting them into a scrapbook. Each
snippet of help represents a step required to perform a task.
This metaphor is further extended using features such as
cut-out edges and different levels of help. Graphstract may
also be thought of as a static instance of follow-me
documentation wizards, which embed scripted help into the
application (e.g. [1]). However, Graphstract is loosely
coupled, not integrated into the target application. Its focus
is to help the user learn the task, rather than providing an
automated resource to perform the task for the user.

Design Principles
The core idea of constructing minimal graphical help is in
capturing the snippet of screen surrounding the interaction
in the application. This area is usually where the mouse
interacts with controls in the application or keyboard input
occurs. Luckily, these elements are often located in close
proximity. Controls that are good candidates for capturing
in Graphstract include menus, buttons, textboxes, and tabs
(Figure 1). The graphical tokens are arranged in the help
file using the method described below.

Figure 1 shows Graphstract demonstrating how to toggle
the auto capitalization feature in Microsoft Word; a
complex task because it includes interactions with multiple
nested dialog boxes. Graphstract is not intended to be used
on its own, but always in conjunction with the application it
is supporting, as illustrated in Figure 2. As such, it can
exploit the advantages of minimalism by providing pointers
to elements of the interface of the main application without
having to replicate them entirely.

Layout of Graphical Tokens
Controls are placed relative to their actual location in the
application windows. This arrangement gives the user a
clue to the control’s location in the application. We take the
traditional ‘lower means later’ convention for sequence
information and add to it indentation, which serves to signal
the opening of a new sub-window (often a dialog box). This
provides a condensed overview of an entire task which can
be several levels deep in the interface. Many test users' first
comments were that they understood the top-to-bottom
representation used by Graphstract.

When title bars are present, snippets of menus are
positioned directly below them to replicate their placement
in the actual interaction space. In early pilot studies, we
found that systematic token placement (i.e. fixed distance
between each token regardless of token location on the
screen) was not as successful as roughly replicating the
interaction space. Thus, controls are placed relative to their
location in the menu or dialog box. For example, the
graphical token of an OK button is placed closer to the right
edge in the help, where it can be found on the dialog box.
Users in the two user studies stated that the relative
positioning of graphical tokens was both obvious and
helpful.

Figure 1: The Graphstract prototype (GS1), demonstrating
how to toggle auto-capitalization in Microsoft Word.

Bounding Boxes
Graphstract's Bounding Boxes identify which parent object
a control belongs to by stacking the layers of dialog boxes
together. Examples of parent objects are dialog boxes,
applications, or windows, since controls essentially belong
to one of these. To create bounding boxes, two designs are
possible: title bars and outline bounding boxes.

Figure 2: The Graphstract prototype (GS1), demonstrating
how to insert a horizontal line into a document.

Title bars are graphical cut-outs of an application window's
title bar. Figure 1 shows the main Microsoft Word title bar
at the top. The approach assumes that the user will be able
to tell that the indented Options dialog box title bar is a

child object of the main Word window, and the further
indented Grammar Settings dialog box is a child object of
the Options dialog box. User testing showed that people
understood this convention, but had suggestions for its
improvement.

An alternative to title bars is a bounding box outline around
all controls belonging to the same parent object. They can
be used with title bars, or as replacements. Bounding box
outlines were proposed by users commenting on
Graphstract after completing the GS1 user study. An outline
of a bounding box clarifies which controls belong to their
parent objects, something that may be unclear with title bars
(Figure 3). In the user study of GS3, users correctly
identified bounding box outlines were separate windows.

Edges for Graphical Tokens
We experimented with different types of edges for the
graphical tokens: jagged edges, straight edges, and smooth
edges. Straight edges were used when a token rested near
the border of the interaction space; an example is the OK
button on many dialog boxes. In the pilot tests, we found
that preserving straight edges where they exist in the UI
serves the dual purpose of meshing more closely with what
the user sees on the screen (thus reassuring) and hinting
about the location of the control. This preservation of edges
is especially valuable for an OK button, where the snippet
often includes two straight edges that form a corner of the
parent dialog box.

Our initial idea was to have jagged edges around the
remaining graphical tokens to illustrate that the graphical
abstracts were a representation of the interaction rather than
a part of the interaction space. The user is given the
impression that the tokens are parts of the user interface that
have been ripped off the screen and placed together like
pieces of a puzzle. From the first user study, we found that
users did not quite understand this metaphor, so we decided
to use smooth elliptical edges instead, which are also
simpler to construct. We believe that the smooth edges will
still give the impression that the graphical tokens are cut
from the interface and make them appear more natural
looking. However, users generally didn’t notice the edges
during the user study. When asked, they seemed indifferent
about the type of edges used, so we believe that the choice
of edges on non-bordering graphical tokens is immaterial.

Detailed View
We explored the idea of multiple levels of abstraction in
Graphstract, enabling the system to help users with varying
levels of experience. GS1 originally had 3 levels of help: a
concise view that presented only the title bar of the dialog
boxes, the default view that is the standard placement of
graphical tokens on the screen, and a more detailed view
consisting of complete screenshots of the application to
guide the user all the way. However, pilot tests using the 3
levels of help indicated that the concise view lacked
sufficient information to be useful and it was subsequently

removed. The default level of help (Figure 1) was designed
to allow advanced users to skim through and near-novice
users to step themselves through an interaction. Alternately,
the detailed view allowed more novice users to see the
entire interaction screen step-by-step, using thumbnails to
confirm and reassure users. Users navigated between the
two views with the + and - magnification icons near the top
of the window (visible in Figure 2).

Figure 3: Graphstract (GS3) for adding a contact in Outlook
Express, showing bounding box outlines.

Visual Cues
We used small colored dots in the graphical abstracts to
draw the user's attention to specific parts of the image. In
GS1, we used red dots with a blotchy, rather than solid
appearance in the graphical tokens to indicate areas of
importance. Users from the first user study positively
commented on the cues in the Detailed View, which guided
the user to the location of a control by showing the entire
interaction space and highlighting the location of pertinent
controls. In addition, the red dots serve as a reassurance in
cases where two similarly named controls exist. However,
some users were confused because they expected the visual
cues to be visible in the actual software as well. In another
implementation, we used orange circles and arrows which
is more standard practice in existing screenshot help.

Icons were also found to be helpful in providing the user
with clues for performing the task when the snippets
themselves were unclear or insufficient. An example is the

linked text task from GS1 (Figure 4), where the user needs
to use the right mouse button, rather than the left, to access
certain functions, and to drag and drop with the mouse.
Icons were placed near the location of the action; in this
case, the mouse icon was placed next to the location the
user should right-click.

Figure 4: Hint icons that suggest using the right mouse button
and drag and drop in GS1.

Color
One of the most visible changes from our first Graphstract
implementation to the latest one (GS3) was the removal of
color from the graphical tokens. A problem we discovered
during the first user studies was that users would often
confuse Graphstract with the actual application. Although
anyone can tell the difference between a map of Boston and
the city of Boston, the application and the ‘map’ of the
application look exactly the same, because the latter is a
screen capture of the former. This problem has arisen in
past user studies of graphical help where users tried to
interact with the images [11]. We found that removing the
color from the graphical tokens resolved this issue; a
grayscale image no longer looks like the application.
Grayscale is used in many interfaces to represent a
currently non-interactive element, such as disabled buttons,
creating an analogy for our maps of the interface. The user
study of GS3 showed that users were no longer confused
about Graphstract as an application; there were no
additional comments about the grayscale nature of the help.

Semi-Automatically Constructing Graphstracts
Writing help text is laborious. Having an application create
the help is appealing, but is typically complex and error-
prone. Previous work done on generating help from text
[14,15,16,18] suffers from the problem of "What are the
inputs?" as well as the difficulty of actual implementation.
It is obviously difficult to automatically create readable
instructional text help from an application. However, with
graphical help, it is possible to capture the area where a

help designer interacts with the application interface. The
help designer can simply perform a task on an application,
and let a recording application take care of making the
correct screen captures and generating the Graphstracts
from them. The concept of recording the actions and
replaying them for the user as instructional material is the
basic idea behind many software-based instructional videos
such as Video Professor [23]. DocWizards [1] is similar to
Graphstract and allows capture and replay of applications,
but generates textual instructions from the scripts. Such a
feature can also be used to support informal help-giving
between peers in an organization, and the reuse of that help
[21]. In such circumstances, the Graphstract may be
constructed during a peer help-giving episode, used as a
rhetorical device to talk through and clarify certain critical
steps of the interaction or concepts necessary to understand
the process, and then used as a take-home crib for
subsequent re-use by the help-seeker.

In GS3, we implemented a system that creates Graphstracts
by capturing the correct action sequences as performed by
the help designer. Captures are made on each mouse click
(down and up button presses) and just before keyboard
input. The captured area at the mouse or cursor location is
an elliptical token shaped so the width is twice the size of
its height. Given the way that text and interface controls are
generally structured on a user interface, this method
captures a reasonable amount of pertinent information with
a fixed shape. A dynamic shape has been suggested but this
would have been problematic when the interaction is not
with a small control. The generator filters out duplicate
screen captures and creates the Graphstracts from the
remaining ones. One disadvantage of automatically
generated Graphstracts is the difficulty of piecing together
graphical tokens that are related, such as the menu bar,
menu items, and submenus. The process of selecting a
menu item under a submenu is one action, but due to the
number of potential clicks, appears as separate graphical
tokens. Although there may be more sophisticated methods
to decide when to perform an image capture, this naïve
method works in most cases to generate understandable
minimal graphical help. The automatic construction of the
help alleviates much of the tedious tasks of a help designer,
but problems do occur. The recorder is unaware of the
degree of importance of the surrounding text, so it cannot
adjust the size of the captured area. For example, in forms
where the field name (e.g. address) is followed by a
textbox, a snippet of just the textbox looks too similar to the
other textboxes in the form. Still, such a tool can also be
useful just as a way to suggest what might be recorded,
even if this has to be subsequently edited manually.

Generating Multi-Contextual and Multi-Lingual Help
A system that generates help automatically can record the
action the help designer performs and then generate the
help later. These recorded actions are replayed on another
machine and the help is generated in that environment. The
advantage is that potentially, for certain interfaces, the

resultant help can be created in the computational context
of the help-seeker’s home machine, rather than simply
being a graphical representation of what was seen on the
help-giver's screen. Thus if the help seeker is using a
particular interface skin, color scheme, or theme, the
provided help will look like the actual applications running
on their machine. Furthermore, if they are using an
interface with a different language, the help generated will
use images derived from that setting too (Figure 5).
Because the task recording and replaying tool is blind to the
text in the application, it will generate Graphstracts with
whatever text is displayed in the environment (Figure 6).
This has also been done in text help in [15,18].

Figure 5: Graphstracts for Disabling CD ejection in CloneCD
in English and Czech.

This feature, although compelling is very brittle. Recorded
logs are typically rendered useless after a version change in
an application. Removing a single control, or changing the
order that dialog boxes are displayed will confuse the
replay tool and generate incorrect screen captures. We
acknowledge there are technical difficulties in
implementing a perfect or even consistent record and replay
system, but the potential is intriguing.

One design decision to make is ‘analog vs digital’. When
recording the help designer's actions, are we recording the
low-level input (mouse moves 3 pixels left and up 8 pixels)
or messages sent to the user controls (Save was clicked)?
Recording the low-level input is an analog-like approach,
and can cause problems if the positions of the controls are
even minutely different in the environment. For example,
Microsoft Windows allows users to change the default font
size on controls. This may cause a button to be slightly
larger and change the position of the interface's controls. A
recorded click at a specific location may now just click
empty space. Different languages will also have different
lengths of the text used in the controls. The menu item
labeled "File" in English is "Fichier" in French so takes up
more space in French. An analog recording of the help
designer clicking on the "Edit" menu in an English version
of the software may instead click on the "Fichier" menu if
replayed in the French version of the software.

On the other hand, a "digital" recording of interaction may
be better, but much harder to implement. Capturing the
interaction of a specific control will avoid errors caused by

control position changes in the user environment. For
example, if "CLICK sent to TEXTBOX3" is recorded, the
replay system can find the location of TEXTBOX3 at
runtime, move the mouse over to that control, and perform
a CLICK action. However, the API (Application
Programming Interface) offered by the operating system
has to allow for recording of these specific actions.
Implementation difficulties include the lack of a
notification message sent out in Windows when a menu
item is selected, custom controls not sending notification
messages when interacted with, and a different action that
must be performed for every notification message.

Figure 6: A Graphstract generated automatically using GS3
showing how to move an image from Photoshop to Word.

Implementation
We implemented three prototypes of Graphstract. Each
iteration took the successful design principles of the
previous prototype and incorporated new design principles
we came up with while studying the previous prototype.
Table 2 summarizes the different versions of Graphstract
and their respective features.

Graphstract Design Feature GS1 GS2 GS3

Structured Layout of Graphical Tokens X X X
Visual Cues X X X
Detailed View X
Title bars X X
Outline Bounding Boxes X
Grayscale X
Automated Graphstract Construction X X
Static Help Construction X X
Dynamic Help Construction X X

Table 2: Design Features incorporated in the different
Graphstract implementations.

GS1 – The First Generation Graphstracts
The first Graphstract prototype, GS1 (described in more
detail in [10]) was written in C++ using the .NET libraries.

Besides graphical tokens, GS1 used different levels of help,
visual cues, and jagged edges. Graphstract help was created
for Microsoft Word with user studies in mind, and the tasks
had a wide range of interactions with the application.

GS2 – Constructing Dynamic Graphstracts Automatically
Encouraged by the success of GS1, we developed a new
version GS2 that addressed some of the biggest issues
identified in the evaluation work. By having a recording
application that stored the help designer's interactions, and
then creating the Graphstracts during replay, we were able
to construct Graphstracts automatically. The time and effort
required to create the Graphstracts is now less than that to
create the equivalent text help. We also solved the problem
of Graphstract's vulnerability to changes in the user
environment – a Graphstract created by help designers
would look awkward and different on a user's computer if
the user had a different theme. Since there are even several
different popular themes for Microsoft Windows (Windows
Classic, Windows XP, and Windows Vista look), it is likely
that the application images in the Graphstracts will be in a
different theme from the user's own environment.

We added a module to Jacareto, a Java capture and replay
program, which created the Graphstracts when the
replaying occurred. The idea is that the help designer would
perform the task while Jacareto was running and these
captured logs would be the help files packaged with the
software application. We created Graphstracts using our
modified Jacareto program to record and replay tasks in
Greenstone, a Java digital library application. When
installed on the user's computer, the Graphstract help would
be generated while replaying the actions on the user's
computer. An added benefit with this method is that
Graphstract can be localized to the user's environment, with
matching language and regional settings. However GS2 can
only work with certain Java-based applications.

GS3 – A Refined System-Wide Graphstract
We decided to combine automation and grayscale to
implement our third Graphstract prototype, GS3 (Figure 7).
GS3 was written in C++ and used the native Windows API
libraries. It incorporated all of the features of the previous
versions except for detailed view (Table 2) since in use this
was not found to be a popular feature. One key feature of
GS3 was the ability to work across multiple applications.
Many computer tasks, such as "instant message a web link
to somebody", require more than one application. This is of
particular value for contextualized help-giving, in the
workplace, for example. Traditional help systems are
application specific, but users regularly use multiple
applications to get their work done. The implementation of
GS3 was "analog" across the operating system, and so
recorded and replayed low-level input blind to the
application it was manipulating. One drawback is that the
replay will not work if windows are moved in the operating
system, since the recording system depends on specific
absolute locations of GUI elements.

With GS3, we also implemented a version that constructed
the Graphstracts immediately after recording the actions by
the help designer, rather than constructing the Graphstracts
during a replay of the recorded actions. The advantage is
that it avoids the problems that arise with delayed replay,
such as moved windows or changed settings. However,
Graphstracts generated no longer blend into the user's
environment, and the translation facility is lost. This is the
trade-off consequence of supporting multi-application help.

Figure 7: GS3 automatically generated help for changing the
color mode of an image and then applying the "Dry Brush"
filter in Adobe Photoshop. The grayscale color shows that the
Graphstracts are not actual interactive controls.

USER STUDIES
Our approach for determining the effectiveness of
Graphstract was similar to those used in other instructional
help user studies [9,22]. Users were observed as they
completed tasks using both Graphstract and the built-in text
help. The help screen and application were presented side-
by-side to avoid the confusion of switching between
applications [11]. There were two formative user studies –
one for GS1 to determine the general effectiveness of
graphical abstract help, and one for GS3 to examine the
usability of automatically generated Graphstracts.

GS1 User Study

Method
Each user was told that Graphstract was a graphical help
system and they could use either Microsoft Word Help or
Graphstract (whichever one was presented to them) to help
them complete various tasks. We did not explain how to use
Graphstract, since we wanted to find out whether they could
learn Graphstract for themselves in order to emulate a real-
world experience. For each task, we briefed the user on the
task, and opened up the corresponding Graphstract or Word
Help application. Users were encouraged to talk out loud
during the interactions and a questionnaire was
administered at the end of the study. Each task was timed to
see how long a user took to complete it.

The study was intended to see whether users could
understand the Graphstract concept, learn how to use it
without training, and how well users performed a task given
Graphstract help versus Microsoft Word Help. We wanted
to explore users' interactions with the help, rather than the
process of locating the right help page which is a separate
problem altogether. This sets a high bar for success of the
Graphstract concept: it was competing with a very familiar
product (the standard Microsoft Help interface), no prior
training was provided, and an extremely minimalist form of
the Graphstract concept was being tested – one with
absolutely no accompanying text. After roughly a dozen
rounds of iterative informal pilot tests of Graphstract
conducted in small batches, we conducted a more formal
study with 20 students in various disciplines.

Each user completed four tasks with Microsoft Word Help,
and four tasks with GS1. The eight tasks used in the study
were broken down into four pairs of similar difficulty. Half
of the user group used Graphstract on the first task and
Word Help on the second task for each pair of tasks, and
vice versa for the other half of users. Microsoft Word was
displayed on the left of the screen taking up about 2/3 of the
screen, and the help system was displayed on its right. The
users performed the task with Microsoft Word and were
able to simultaneously use the help system.

The eight tasks used in the formal studies are shown in
Table 3, arranged in pairs in order of increasing difficulty
(based on the likelihood an average user would have
experience with a particular task). The users performed the
tasks in order of difficulty starting with the easiest. The
tasks were chosen through a brainstorming session by the
research group. The goal was to find representative tasks
that were often performed in Microsoft Word, which
included a diverse set of actions.

Results
Results of the user study on GS1 are shown in Table 3. For
more details about the tasks, see [10]. A t-test of the data
from [10] is presented here. For 6 of the 8 tasks there was
no significant difference in the results between those using
Graphstract or the built-in text help. However, there were 2
tasks where users of Graphstract significantly outperformed
those using the built-in text help. Users of Graphstract
performed these 2 tasks in about half the time. Using
Graphstract or the built-in text help did not affect the
success of completing the task; both types of help had the
same number of failed attempts.

We hypothesized that learning to use Graphstract with no
prior instruction would not impose too much of a
performance burden, and that using graphical abstracts
would be faster and less confusing for the average user to
learn a task. This was confirmed in the study; on average
over all tasks, users were able to solve their problems 15%
faster when using Graphstract than with the textual
Microsoft Word help. However, Graphstract did not help
users perform faster in every task.

Graphstract users were slower in tasks 4 and 6 but not
significantly; the two help systems had similar performance
times in tasks 2, 3 and 8, and users using Graphstract were
substantially faster in tasks 1, 5 and 7.

The two tasks where Graphstract was less effective
involved changing the text to upper-case and linking text
respectively. In task 4, the textual help was very concise
and clear about how to change the case of the text. In task
6, users had trouble figuring out the right click drag and
drop because Graphstract was unable to show this easily.
Another explanation is because these tasks were mainly text
focused, and Graphstract lacked the ability to demonstrate
features that were text-based because of its graphical
nature. The results also indicated that using Graphstract
versus textual help did not change the success rate, i.e. the
number of times the user gave up.

Text Graphstract Task
Avg SD Avg SD

p

Highlight a selection of text 68 55 23** 16 0.012

Switch to outline view 51 83 40 50 0.369

Insert a horizontal line 47 32 44 29 0.408

Convert text to uppercase 21 19 34 40 0.174

Set a keyboard shortcut 244 77 178 121 0.098

Create linked text 81 103 116 101 0.264

Disable capitalization check 110 56 45** 25 0.003

Overlap two layers of text 177 84 167 84 0.402

Table 3: Task completion times in seconds for the GS1
usability study

GS3 User Study

Method
A short survey was given to 4 students with computer
backgrounds. The objective of the survey was to find out
which application would be a good target for comparing
help systems. The survey asked for 3 example tasks the
participant would want the application's built-in help
system to explain. We identified Outlook Express, the built-
in Windows email client, and Adobe Photoshop, an image
editing application as possibilities for the user study
because they are popular Windows applications, with fairly
complex tasks for the user to perform. From the survey, we
concluded that Outlook Express would be a better candidate
for user studies because most participants had less
experience with it. The tasks the participants most wanted
help for were: message grouping, adding contacts to the
address book, adding multiple contacts as a group, and
creating message filters. Therefore, user studies were
conducted using Graphstract help and the built-in Outlook
Express help for those tasks.

The second user study was a simple within subjects
evaluation with 17 users. Users who participated in the GS1
user study were contacted, while the remaining students

were found through message boards or from a Computer
Science course and received course credit for participation.

This study aimed to determine if automatically created
Graphstracts were a viable alternative to manually created
Graphstracts. The Graphstract help was generated by the
authors performing the task with the recorder on, and then
replaying it to construct the Graphstracts. The users were
not told that the Graphstracts in the second study were
automatically generated.

The same user study format was used as before. Users were
asked to complete 4 tasks (listed in Table 4), 2 using each
help system. They were encouraged to talk aloud during the
pre-study instructional session and completed a post-survey
questionnaire. Half the users completed Group 1 tasks using
Graphstract and Group 2 tasks using text help. The
remaining users completed Group 1 tasks using text help
and Group 2 tasks using Graphstract.

Task Group

Group messages by conversation 1

Add contact to Address Book 2

Add multiple contacts as a group 1

Create a rule to delete messages with 'spam' in the subject 2

Table 4: Tasks for the user study using GS3

Results
There were 4 users who took part in both user studies – GS1
and GS3. All 4 students said that GS3 was an improvement
over GS1 in the post-study questionnaire. One user
mentioned that it was easier to follow and another
commented that it was clearer. Of the 17 users who took the
user study, 12 said they liked Graphstract better, 2 said they
liked the text help better, and 3 did not mention any
preference. The results from this study were similar to those
in the first study of GS1, and a direct comparison by the 4
users who participated in both studies supported the
hypothesis that automatically generated Graphstracts were
as effective as the manually constructed ones.

Qualitative results were similar to those in the first study.
Users commented that they were better able to skim
Graphstract, and that using Graphstract was like following
the bolded action words in text help. We also observed that
users would get stuck on a step in text help if they did not
understand some of its terminology. This doesn't occur in
graphical help because the graphical tokens are from the
application itself.

In one particular instance of a Graphstract, users were
confused by the Graphstract forms; the automatically
generated Graphstract cut off the label for the textboxes
because it was located to the left of the textbox. The users
were unable to distinguish between the different textboxes.

DISCUSSION AND FUTURE WORK
The user studies gave an overall impression that users were
able to use Graphstract to solve their problem in less time

than using the built-in Microsoft Word text help. On
average, Graphstract users were able to speed up the time it
took to complete a task in 6 of the 8 tasks (2 were
significant). In both post-study surveys, users said that they
enjoyed using Graphstract more and thought using
Graphstract helped them complete a task quicker; they also
stated that they would prefer it to textual help. Since all the
users but 4 were first-time users, and they were able to
understand Graphstract, we can claim that no substantial
learning effort is required. Note that the studies were
developed as formative evaluations to inform subsequent
exploration of the design space. They cannot and should not
be taken as claiming definitive proof that the particular
versions of the applications tested are effective.

When implementing Graphstract, we hypothesized that
several key features would enhance the user experience. We
found that these varied between users. Most understood that
the jagged edges meant that each pictorial piece was a
snippet; however, there was a minority who were confused
by them. Likewise, of the few users that explored the
Detailed View, most thought the red dots were useful
guides, but the rest said that the red dots got in the way. The
mouse hint icon used in the linked text task was helpful to
some users, but failed for others in indicating that a right-
click drag and drop action should be performed. Even those
who understood it took a long time to figure it out. We
believe that a possible solution is minimal animation,
showing a mouse in the drag and drop action, combined
with a down-pressed right mouse button.

The post-study surveys also showed that the biggest
problem users had with Graphstract was its lack of any text.
Most commented that some text to explain Graphstract or
guide the user in using Graphstract would be beneficial. In
the second study, several users suggested numbering the
Graphstracts, even though they understood that Graphstract
flowed from top to bottom. We agree with this and believe
that help systems should include some guiding text when
necessary, based on the complexity of the task. The
Graphstract prototype used in the user studies was purely
graphical to examine the potential of such systems. A topic
for future work is to develop a help system that combines
Graphstract and minimal text help.

Graphstract was especially strong in tasks where the user
had to navigate dialog boxes and interact with certain
controls. From the GS1 study, tasks 3 (Insert a horizontal
line) and 7 (Disable capitalization check), were examples of
this. Users were able to complete each of these tasks much
faster using Graphstract, and we observed that they
performed the tasks more smoothly. Graphstract users
completed the 2 tasks in less than half the time as text help
users, better than the average improvement for all the tasks.
We believe this is because users are able to recognize the
dialog boxes and controls easily to discern the next step to
complete a task. The visual recognition takes less time than
reading text. It is less obvious what to do when presented
with an unfamiliar image or one not in the application.

In our second user study of Graphstract, GS3, we found that
users were able to understand the automatically generated
help at least as well as the manually generated help. This is
impressive considering some Graphstracts had obvious
flaws that a human would correct if manually constructed.

CONCLUSION
The iterative development and testing confirms that
minimalist graphical help offers great potential.
Graphstracts usually use less space than their screenshot
counterparts and are a better way to present information
than text-centric help. Although Graphstract has some
problems representing certain dynamic actions, it is
effective in aiding a user to perform tasks involving dialog
boxes and controls. Graphstract’s advantage here is that
users gain both overview and detail. They are able to skim
the help graphics and match them with the actual interface,
and so quickly execute the next action step.

The Graphstract prototypes presented in this paper were
used to investigate the potential of the idea in a rather
challenging comparison. Despite having to compete with
conventional help, which users are very familiar with, and
despite the additional burden of understanding the meaning
and purpose of a novel interface, Graphstract was found to
be effective overall, and dramatically better than
conventional help for some problematic tasks. Although we
do not dispute that some accompanying text is often useful,
we wanted to explore graphical help in its purest form, and
understand how users react to image-only help. Advantages
of pure graphical help include being able to dynamically
and automatically generate them from recorded actions, and
the potential of creating help in multiple languages.

ACKNOWLEDGEMENT
This work was supported in part by the National Science
Foundation under award No. ITR 0081112.

REFERENCES
1. Bergman, L., Castelli, V., Lau, T., and Oblinger, D.

DocWizards: a system for authoring follow-me
documentation wizards. In Proc. of UIST '05, ACM
Press (2005), 191-200.

2. Bharat, K. and Sukaviriya, P. Animating User Interfaces
Using Animation Servers. In Proc. of UIST '93, ACM
Press (1993), 69-79.

3. Black, J. B., Carroll, J. M., and McGuigan, S. M. What
kind of minimal instruction manual is the most effective.
In Proc. of CHI '87, ACM Press (1987), 152-162.

4. Brockmann, J. R., The Why, Where and How of
Minimalism. In Proc. of SIGDOC '90, ACM Press
(1990), 111-119.

5. Carroll, J. M., The Nurnberg Funnel: Designing
Minimalist Instruction for Practical Computer Skill. The
MIT Press (1990).

6. Carroll, J. M., Smith-Kerker, P. L., Ford, J. R., and
Mazur-Rimetz, S. A. The Minimal Manual. Human-
Computer Interaction, 3 (1987-88), 2, 123-153.

7. Farrand, A. B. and Wolfe, S. J. On-line help: Are we
tossing the users a lifesaver or an anchor? Proc. of CHI
’92: Posters and Short Talks, ACM Press (1992), 21.

8. Gellevij, M. and Van der Meij, H. Empirical Proof for
Presenting Screen Captures in Software Documentation.
Technical Communication (2004), 51(2), 224-238.

9. Harrison, S. A Comparison of Still, Animated, or
Nonillustrated On-Line Help with Written or Spoken
Instructions in a Graphical User Interface. In Proc. of
CHI '95, ACM Press (1995), 82-89.

10. Huang, J., Lu, B., and Twidale, M. B. Graphical
Abstract Help. In Proc. of CHINZ '05, ACM Press
(2005), 83-89.

11. Knabe, K. Apple guide: a case study in user-aided
design of online help. In Proc. of CHI '95, ACM Press
(1995), 286-287.

12. Lau, T., Bergman, L., Castelli, V. and Oblinger, D.
Sheepdog: Learning procedures for technical support. In
Proc. of IUI '04. ACM Press (2004), 109-116.

13. Palmiter, S. and Elkerton, J. An Evaluations of
Demonstrations for Learning Computer-based Tasks. In
Proc. of CHI '91, ACM Press (1991), 257-263.

14. Paris, C., Linden, K. V. and Lu, S. Automated Knowledge
Acquisition for Instructional Text Generation. In Proc. of
SIGDOC '02, ACM Press (1992), 142-151.

15. Power, R and Scott, D. Multilingual authoring using
feedback texts. In Proc. of COLING '98 (1998), 1053-1059.

16. Reiter, E., Mellish, C., and Levine, J. Automatic
Generation of Technical Documentation. Applied
Artificial Intelligence (1995), 9, 259-287.

17. Rettig, M. Nobody Reads Documentation. In
Communications of the ACM (1991), 34(7), 19-24.

18. Rösner, D. and Stede, M. Generating Multilingual
Documents from a Knowledge Base: The TECHDOC
Project. In Proc. of COLING '94 (1994), 339-343.

19. Sukaviriya, P., Isaacs, E., and Bharat, K. Multimedia
Help: A Prototype and an Experiment. In Proc. of CHI
'92, ACM Press (1992), 433-434.

20. Sukaviriya, P. Dynamic Construction of Animated Help
from Application Context. In Proc. of UIST '88, ACM
Press (1988), 190-202.

21. Twidale, M. B. Over the shoulder learning: supporting
brief informal learning. In Proc. of CSCW '05, ACM
Press (2005), 14(6), 505-547.

22. Vanderlinder, G., Cocklin, T. G., and McKita, M.
Testing and developing minimalist tutorials: A case
history. Proc. of ITCC '88. Society of Technical
Communication (1988), 196-199.

23. Video Professor. http://www.videoprofessor.com/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

